The MapReduce Model on Cascading Platform for Frequent Itemset Mining
The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce is one of the parallel and distributed programming models. The implementation of parallel programming faces many difficulties. The Cascading...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Gadjah Mada
2018-07-01
|
Series: | IJCCS (Indonesian Journal of Computing and Cybernetics Systems) |
Subjects: | |
Online Access: | https://jurnal.ugm.ac.id/ijccs/article/view/34102 |
Summary: | The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce is one of the parallel and distributed programming models. The implementation of parallel programming faces many difficulties. The Cascading gives easy scheme of Hadoop system which implements MapReduce model.
Frequent itemsets are most often appear objects in a dataset. The Frequent Itemset Mining (FIM) requires complex computation. FIM is a complicated problem when implemented on large-scale data.
This paper discusses the implementation of MapReduce model on Cascading for FIM. The experiment uses the Amazon dataset product co-purchasing network metadata.The experiment shows the fact that the simple mechanism of Cascading can be used to solve FIM problem. It gives time complexity O(n), more efficient than the nonparallel which has complexity O(n2/m). |
---|---|
ISSN: | 1978-1520 2460-7258 |