An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO

A module to calculate online trajectories has been implemented into the nonhydrostatic limited-area weather prediction and climate model COSMO. Whereas offline trajectories are calculated with wind fields from model output, which is typically available every one to six hours,...

Full description

Bibliographic Details
Main Authors: A. K. Miltenberger, S. Pfahl, H. Wernli
Format: Article
Language:English
Published: Copernicus Publications 2013-11-01
Series:Geoscientific Model Development
Online Access:http://www.geosci-model-dev.net/6/1989/2013/gmd-6-1989-2013.pdf
_version_ 1817996739310780416
author A. K. Miltenberger
S. Pfahl
H. Wernli
author_facet A. K. Miltenberger
S. Pfahl
H. Wernli
author_sort A. K. Miltenberger
collection DOAJ
description A module to calculate online trajectories has been implemented into the nonhydrostatic limited-area weather prediction and climate model COSMO. Whereas offline trajectories are calculated with wind fields from model output, which is typically available every one to six hours, online trajectories use the simulated resolved wind field at every model time step (typically less than a minute) to solve the trajectory equation. As a consequence, online trajectories much better capture the short-term temporal fluctuations of the wind field, which is particularly important for mesoscale flows near topography and convective clouds, and they do not suffer from temporal interpolation errors between model output times. The numerical implementation of online trajectories in the COSMO-model is based upon an established offline trajectory tool and takes full account of the horizontal domain decomposition that is used for parallelization of the COSMO-model. Although a perfect workload balance cannot be achieved for the trajectory module (due to the fact that trajectory positions are not necessarily equally distributed over the model domain), the additional computational costs are found to be fairly small for the high-resolution simulations described in this paper. The computational costs may, however, vary strongly depending on the number of trajectories and trace variables. Various options have been implemented to initialize online trajectories at different locations and times during the model simulation. As a first application of the new COSMO-model module, an Alpine north foehn event in summer 1987 has been simulated with horizontal resolutions of 2.2, 7 and 14 km. It is shown that low-tropospheric trajectories calculated offline with one- to six-hourly wind fields can significantly deviate from trajectories calculated online. Deviations increase with decreasing model grid spacing and are particularly large in regions of deep convection and strong orographic flow distortion. On average, for this particular case study, horizontal and vertical positions between online and offline trajectories differed by 50–190 km and 150–750 m, respectively, after 24 h. This first application illustrates the potential for Lagrangian studies of mesoscale flows in high-resolution convection-resolving simulations using online trajectories.
first_indexed 2024-04-14T02:27:47Z
format Article
id doaj.art-6f9a5f6d53ef4a22a4eb17840a6632a3
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-04-14T02:27:47Z
publishDate 2013-11-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-6f9a5f6d53ef4a22a4eb17840a6632a32022-12-22T02:17:50ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032013-11-01661989200410.5194/gmd-6-1989-2013An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMOA. K. Miltenberger0S. Pfahl1H. Wernli2Institute for Atmospheric and Climate Science, ETH Zurich, SwitzerlandInstitute for Atmospheric and Climate Science, ETH Zurich, SwitzerlandInstitute for Atmospheric and Climate Science, ETH Zurich, SwitzerlandA module to calculate online trajectories has been implemented into the nonhydrostatic limited-area weather prediction and climate model COSMO. Whereas offline trajectories are calculated with wind fields from model output, which is typically available every one to six hours, online trajectories use the simulated resolved wind field at every model time step (typically less than a minute) to solve the trajectory equation. As a consequence, online trajectories much better capture the short-term temporal fluctuations of the wind field, which is particularly important for mesoscale flows near topography and convective clouds, and they do not suffer from temporal interpolation errors between model output times. The numerical implementation of online trajectories in the COSMO-model is based upon an established offline trajectory tool and takes full account of the horizontal domain decomposition that is used for parallelization of the COSMO-model. Although a perfect workload balance cannot be achieved for the trajectory module (due to the fact that trajectory positions are not necessarily equally distributed over the model domain), the additional computational costs are found to be fairly small for the high-resolution simulations described in this paper. The computational costs may, however, vary strongly depending on the number of trajectories and trace variables. Various options have been implemented to initialize online trajectories at different locations and times during the model simulation. As a first application of the new COSMO-model module, an Alpine north foehn event in summer 1987 has been simulated with horizontal resolutions of 2.2, 7 and 14 km. It is shown that low-tropospheric trajectories calculated offline with one- to six-hourly wind fields can significantly deviate from trajectories calculated online. Deviations increase with decreasing model grid spacing and are particularly large in regions of deep convection and strong orographic flow distortion. On average, for this particular case study, horizontal and vertical positions between online and offline trajectories differed by 50–190 km and 150–750 m, respectively, after 24 h. This first application illustrates the potential for Lagrangian studies of mesoscale flows in high-resolution convection-resolving simulations using online trajectories.http://www.geosci-model-dev.net/6/1989/2013/gmd-6-1989-2013.pdf
spellingShingle A. K. Miltenberger
S. Pfahl
H. Wernli
An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO
Geoscientific Model Development
title An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO
title_full An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO
title_fullStr An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO
title_full_unstemmed An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO
title_short An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO
title_sort online trajectory module version 1 0 for the nonhydrostatic numerical weather prediction model cosmo
url http://www.geosci-model-dev.net/6/1989/2013/gmd-6-1989-2013.pdf
work_keys_str_mv AT akmiltenberger anonlinetrajectorymoduleversion10forthenonhydrostaticnumericalweatherpredictionmodelcosmo
AT spfahl anonlinetrajectorymoduleversion10forthenonhydrostaticnumericalweatherpredictionmodelcosmo
AT hwernli anonlinetrajectorymoduleversion10forthenonhydrostaticnumericalweatherpredictionmodelcosmo
AT akmiltenberger onlinetrajectorymoduleversion10forthenonhydrostaticnumericalweatherpredictionmodelcosmo
AT spfahl onlinetrajectorymoduleversion10forthenonhydrostaticnumericalweatherpredictionmodelcosmo
AT hwernli onlinetrajectorymoduleversion10forthenonhydrostaticnumericalweatherpredictionmodelcosmo