Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios

<p>The northern-high-latitude permafrost contains almost twice the carbon content of the atmosphere, and it is widely considered to be a non-linear and tipping element in the earth's climate system under global warming. Solar geoengineering is a means of mitigating temperature rise and re...

Full description

Bibliographic Details
Main Authors: Y. Chen, D. Ji, Q. Zhang, J. C. Moore, O. Boucher, A. Jones, T. Lurton, M. J. Mills, U. Niemeier, R. Séférian, S. Tilmes
Format: Article
Language:English
Published: Copernicus Publications 2023-01-01
Series:Earth System Dynamics
Online Access:https://esd.copernicus.org/articles/14/55/2023/esd-14-55-2023.pdf
_version_ 1797943856117841920
author Y. Chen
D. Ji
Q. Zhang
J. C. Moore
J. C. Moore
J. C. Moore
O. Boucher
A. Jones
T. Lurton
M. J. Mills
U. Niemeier
R. Séférian
S. Tilmes
author_facet Y. Chen
D. Ji
Q. Zhang
J. C. Moore
J. C. Moore
J. C. Moore
O. Boucher
A. Jones
T. Lurton
M. J. Mills
U. Niemeier
R. Séférian
S. Tilmes
author_sort Y. Chen
collection DOAJ
description <p>The northern-high-latitude permafrost contains almost twice the carbon content of the atmosphere, and it is widely considered to be a non-linear and tipping element in the earth's climate system under global warming. Solar geoengineering is a means of mitigating temperature rise and reduces some of the associated climate impacts by increasing the planetary albedo; the permafrost thaw is expected to be moderated under slower temperature rise. We analyze the permafrost response as simulated by five fully coupled earth system models (ESMs) and one offline land surface model under four future scenarios; two solar geoengineering scenarios (G6solar and G6sulfur) based on the high-emission scenario (ssp585) restore the global temperature from the ssp585 levels to the moderate-mitigation scenario (ssp245) levels via solar dimming and stratospheric aerosol injection. G6solar and G6sulfur can slow the northern-high-latitude permafrost degradation but cannot restore the permafrost states from ssp585 to those under ssp245. G6solar and G6sulfur tend to produce a deeper active layer than ssp245 and expose more thawed soil organic carbon (SOC) due to robust residual high-latitude warming, especially over northern Eurasia. G6solar and G6sulfur preserve more SOC of 4.6 <span class="inline-formula">±</span> 4.6 and 3.4 <span class="inline-formula">±</span> 4.8 Pg C (coupled ESM simulations) or 16.4 <span class="inline-formula">±</span> 4.7 and 12.3 <span class="inline-formula">±</span> 7.9 Pg C (offline land surface model simulations), respectively, than ssp585 in the northern near-surface permafrost region. The turnover times of SOC decline slower under G6solar and G6sulfur than ssp585 but faster than ssp245. The permafrost carbon–climate feedback is expected to be weaker under solar geoengineering.</p>
first_indexed 2024-04-10T20:29:35Z
format Article
id doaj.art-6fb1d41829ad47a18c5add0613afec75
institution Directory Open Access Journal
issn 2190-4979
2190-4987
language English
last_indexed 2024-04-10T20:29:35Z
publishDate 2023-01-01
publisher Copernicus Publications
record_format Article
series Earth System Dynamics
spelling doaj.art-6fb1d41829ad47a18c5add0613afec752023-01-25T06:59:21ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872023-01-0114557910.5194/esd-14-55-2023Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenariosY. Chen0D. Ji1Q. Zhang2J. C. Moore3J. C. Moore4J. C. Moore5O. Boucher6A. Jones7T. Lurton8M. J. Mills9U. Niemeier10R. Séférian11S. Tilmes12College of Global Change and Earth System Science, Beijing Normal University, Beijing, ChinaCollege of Global Change and Earth System Science, Beijing Normal University, Beijing, ChinaCollege of Global Change and Earth System Science, Beijing Normal University, Beijing, ChinaCollege of Global Change and Earth System Science, Beijing Normal University, Beijing, ChinaCAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, ChinaArctic Centre, University of Lapland, Rovaniemi, FinlandInstitut Pierre-Simon Laplace, Sorbonne Université/CNRS, Paris, FranceMet Office Hadley Centre, Exeter, EX1 3PB, UKInstitut Pierre-Simon Laplace, Sorbonne Université/CNRS, Paris, FranceAtmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USAAtmosphere in the Earth System, Max Planck Institute for Meteorology, Hamburg, GermanyCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceAtmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA<p>The northern-high-latitude permafrost contains almost twice the carbon content of the atmosphere, and it is widely considered to be a non-linear and tipping element in the earth's climate system under global warming. Solar geoengineering is a means of mitigating temperature rise and reduces some of the associated climate impacts by increasing the planetary albedo; the permafrost thaw is expected to be moderated under slower temperature rise. We analyze the permafrost response as simulated by five fully coupled earth system models (ESMs) and one offline land surface model under four future scenarios; two solar geoengineering scenarios (G6solar and G6sulfur) based on the high-emission scenario (ssp585) restore the global temperature from the ssp585 levels to the moderate-mitigation scenario (ssp245) levels via solar dimming and stratospheric aerosol injection. G6solar and G6sulfur can slow the northern-high-latitude permafrost degradation but cannot restore the permafrost states from ssp585 to those under ssp245. G6solar and G6sulfur tend to produce a deeper active layer than ssp245 and expose more thawed soil organic carbon (SOC) due to robust residual high-latitude warming, especially over northern Eurasia. G6solar and G6sulfur preserve more SOC of 4.6 <span class="inline-formula">±</span> 4.6 and 3.4 <span class="inline-formula">±</span> 4.8 Pg C (coupled ESM simulations) or 16.4 <span class="inline-formula">±</span> 4.7 and 12.3 <span class="inline-formula">±</span> 7.9 Pg C (offline land surface model simulations), respectively, than ssp585 in the northern near-surface permafrost region. The turnover times of SOC decline slower under G6solar and G6sulfur than ssp585 but faster than ssp245. The permafrost carbon–climate feedback is expected to be weaker under solar geoengineering.</p>https://esd.copernicus.org/articles/14/55/2023/esd-14-55-2023.pdf
spellingShingle Y. Chen
D. Ji
Q. Zhang
J. C. Moore
J. C. Moore
J. C. Moore
O. Boucher
A. Jones
T. Lurton
M. J. Mills
U. Niemeier
R. Séférian
S. Tilmes
Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios
Earth System Dynamics
title Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios
title_full Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios
title_fullStr Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios
title_full_unstemmed Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios
title_short Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios
title_sort northern high latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios
url https://esd.copernicus.org/articles/14/55/2023/esd-14-55-2023.pdf
work_keys_str_mv AT ychen northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT dji northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT qzhang northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT jcmoore northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT jcmoore northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT jcmoore northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT oboucher northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT ajones northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT tlurton northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT mjmills northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT uniemeier northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT rseferian northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios
AT stilmes northernhighlatitudepermafrostandterrestrialcarbonresponsetotwosolargeoengineeringscenarios