Generating artificial displacement data of cracked specimen using physics-guided adversarial networks

Digital image correlation (DIC) has become a valuable tool to monitor and evaluate mechanical experiments of cracked specimen, but the automatic detection of cracks is often difficult due to inherent noise and artefacts. Machine learning models have been extremely successful in detecting crack paths...

Полное описание

Библиографические подробности
Главные авторы: David Melching, Erik Schultheis, Eric Breitbarth
Формат: Статья
Язык:English
Опубликовано: IOP Publishing 2024-01-01
Серии:Machine Learning: Science and Technology
Предметы:
Online-ссылка:https://doi.org/10.1088/2632-2153/ad15b2