Magnetic biocatalysts and their uses to obtain bioproducts
Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability a...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2014-08-01
|
Series: | Frontiers in Chemistry |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fchem.2014.00072/full |
_version_ | 1818026575059222528 |
---|---|
author | Carmen eLópez Carmen eLópez Álvaro eCruz-Izquierdo Enrique A. Picó Teresa eGarcía-Bárcena Noelia eVillarroel María J Llama Juan L. Serra |
author_facet | Carmen eLópez Carmen eLópez Álvaro eCruz-Izquierdo Enrique A. Picó Teresa eGarcía-Bárcena Noelia eVillarroel María J Llama Juan L. Serra |
author_sort | Carmen eLópez |
collection | DOAJ |
description | Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media and compared between them and to those showed by the corresponding soluble enzyme. Thus, the hydrolysis of triglycerides or the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. |
first_indexed | 2024-12-10T04:34:11Z |
format | Article |
id | doaj.art-6fb40644055945c4a2b90842ec059e03 |
institution | Directory Open Access Journal |
issn | 2296-2646 |
language | English |
last_indexed | 2024-12-10T04:34:11Z |
publishDate | 2014-08-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Chemistry |
spelling | doaj.art-6fb40644055945c4a2b90842ec059e032022-12-22T02:02:03ZengFrontiers Media S.A.Frontiers in Chemistry2296-26462014-08-01210.3389/fchem.2014.0007298037Magnetic biocatalysts and their uses to obtain bioproductsCarmen eLópez0Carmen eLópez1Álvaro eCruz-Izquierdo2Enrique A. Picó3Teresa eGarcía-Bárcena4Noelia eVillarroel5María J Llama6Juan L. Serra7University of the Basque Country (UPV/EHU)Basque Foundation for ScienceUniversity of the Basque Country (UPV/EHU)University of the Basque Country (UPV/EHU)University of the Basque Country (UPV/EHU)University of the Basque Country (UPV/EHU)University of the Basque Country (UPV/EHU)University of the Basque Country (UPV/EHU)Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media and compared between them and to those showed by the corresponding soluble enzyme. Thus, the hydrolysis of triglycerides or the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB.http://journal.frontiersin.org/Journal/10.3389/fchem.2014.00072/fullBiodieselbiosurfactantsmagnetic nanoparticles (MNPs)magnetic cross-linked enzyme aggregates (mCLEAs)sucrose monopalmitate |
spellingShingle | Carmen eLópez Carmen eLópez Álvaro eCruz-Izquierdo Enrique A. Picó Teresa eGarcía-Bárcena Noelia eVillarroel María J Llama Juan L. Serra Magnetic biocatalysts and their uses to obtain bioproducts Frontiers in Chemistry Biodiesel biosurfactants magnetic nanoparticles (MNPs) magnetic cross-linked enzyme aggregates (mCLEAs) sucrose monopalmitate |
title | Magnetic biocatalysts and their uses to obtain bioproducts |
title_full | Magnetic biocatalysts and their uses to obtain bioproducts |
title_fullStr | Magnetic biocatalysts and their uses to obtain bioproducts |
title_full_unstemmed | Magnetic biocatalysts and their uses to obtain bioproducts |
title_short | Magnetic biocatalysts and their uses to obtain bioproducts |
title_sort | magnetic biocatalysts and their uses to obtain bioproducts |
topic | Biodiesel biosurfactants magnetic nanoparticles (MNPs) magnetic cross-linked enzyme aggregates (mCLEAs) sucrose monopalmitate |
url | http://journal.frontiersin.org/Journal/10.3389/fchem.2014.00072/full |
work_keys_str_mv | AT carmenelopez magneticbiocatalystsandtheirusestoobtainbioproducts AT carmenelopez magneticbiocatalystsandtheirusestoobtainbioproducts AT alvaroecruzizquierdo magneticbiocatalystsandtheirusestoobtainbioproducts AT enriqueapico magneticbiocatalystsandtheirusestoobtainbioproducts AT teresaegarciabarcena magneticbiocatalystsandtheirusestoobtainbioproducts AT noeliaevillarroel magneticbiocatalystsandtheirusestoobtainbioproducts AT mariajllama magneticbiocatalystsandtheirusestoobtainbioproducts AT juanlserra magneticbiocatalystsandtheirusestoobtainbioproducts |