Summary: | Eye tracking is a popular research tool in developmental cognitive neuroscience for studying the development of perceptual and cognitive processes. However, eye tracking in the context of development is also challenging. In this paper, we ask how knowledge on eye-tracking data quality can be used to improve eye-tracking recordings and analyses in longitudinal research so that valid conclusions about child development may be drawn. We answer this question by adopting the data-quality perspective and surveying the eye-tracking setup, training protocols, and data analysis of the YOUth study (investigating neurocognitive development of 6000 children). We first show how our eye-tracking setup has been optimized for recording high-quality eye-tracking data. Second, we show that eye-tracking data quality can be operator-dependent even after a thorough training protocol. Finally, we report distributions of eye-tracking data quality measures for four age groups (5 months, 10 months, 3 years, and 9 years), based on 1531 recordings. We end with advice for (prospective) developmental eye-tracking researchers and generalizations to other methodologies. Keywords: Eye tracking, Data quality, Development, Data analysis, Longitudinal
|