Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals

Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related...

Full description

Bibliographic Details
Main Authors: Hemshikha Rajpurohit, Mark A. Eiteman
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/10/11/2226
Description
Summary:Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
ISSN:2076-2607