Fast Prediction of Solute Concentration Field in Rotationally Influenced Fluids Using a Parameter-Based Field Reconstruction Convolutional Neural Network
Many high-performance fluid dynamic models do not consider fluids in a rotating environment and often require a significant amount of computational time. The current study proposes a novel parameter-based field reconstruction convolutional neural network (PFR-CNN) approach to model the solute concen...
Main Authors: | Xiaohui Yan, Abdolmajid Mohammadian, Huijuan Yu, Tianqi Zhang, Jianwei Liu, Sheng Chang, Hongyi Song |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-07-01
|
Series: | Water |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/15/13/2451 |
Similar Items
-
Serbest akım içerisinde salınan bir silindir etrafındaki akışın ataletsiz koordinatlarda sayısal incelenmesi
by: Utku Şentürk
Published: (2018-02-01) -
Serbest akım içerisinde salınan bir silindir etrafındaki akışın ataletsiz koordinatlarda sayısal incelenmesi
by: Utku Şentürk
Published: (2018-02-01) -
Análisis y simulación del modelo térmico y viscoso del proceso de melt spinning
by: Marcelo Barone, et al.
Published: (2018-01-01) -
Numerical Simulation of Turbulent Flow in Bends and Confluences Considering Free Surface Changes Using the Volume of Fluid Method
by: Rawaa Shaheed, et al.
Published: (2022-04-01) -
Numerical Simulation of Flow in Parshall Flume Using Selected Nonlinear Turbulence Models
by: Mehdi Heyrani, et al.
Published: (2021-10-01)