On existence and asymptotic behavior of solutions of elliptic equations with nearly critical exponent and singular coefficients

In this paper we study the existence and asymptotic behavior of solutions of $$-\Delta u=\mu\frac{u}{|x|^{2}}+|x|^{\alpha}u^{p(\alpha)-1-\varepsilon},\qquad u>0 \ \text{in}\ B_{R}(0)$$ with Dirichlet boundary condition. Here, $-2<\alpha<0$, $p(\alpha)=\frac{2(N+\alpha)}{N-2}$, $0<\v...

Full description

Bibliographic Details
Main Authors: Shiyu Li, Gongming Wei, Xueliang Duan
Format: Article
Language:English
Published: University of Szeged 2021-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8651
Description
Summary:In this paper we study the existence and asymptotic behavior of solutions of $$-\Delta u=\mu\frac{u}{|x|^{2}}+|x|^{\alpha}u^{p(\alpha)-1-\varepsilon},\qquad u>0 \ \text{in}\ B_{R}(0)$$ with Dirichlet boundary condition. Here, $-2<\alpha<0$, $p(\alpha)=\frac{2(N+\alpha)}{N-2}$, $0<\varepsilon<p(\alpha)-1$ and $p(\alpha)-1-\varepsilon$ is a nearly critical exponent. We combine variational arguments with the moving plane method to prove the existence of a positive radial solution. Moreover, the asymptotic behaviour of the solutions, as $\varepsilon\to0$, is studied by using ODE techniques.
ISSN:1417-3875