Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica

<p>The surface reflection of solar radiation comprises an important boundary condition for solar radiative transfer simulations. In polar regions above snow surfaces, the surface reflection is particularly anisotropic due to low Sun elevations and the highly anisotropic scattering phase functi...

Full description

Bibliographic Details
Main Authors: T. Carlsen, G. Birnbaum, A. Ehrlich, V. Helm, E. Jäkel, M. Schäfer, M. Wendisch
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/14/3959/2020/tc-14-3959-2020.pdf
_version_ 1828468568932483072
author T. Carlsen
T. Carlsen
G. Birnbaum
A. Ehrlich
V. Helm
E. Jäkel
M. Schäfer
M. Wendisch
author_facet T. Carlsen
T. Carlsen
G. Birnbaum
A. Ehrlich
V. Helm
E. Jäkel
M. Schäfer
M. Wendisch
author_sort T. Carlsen
collection DOAJ
description <p>The surface reflection of solar radiation comprises an important boundary condition for solar radiative transfer simulations. In polar regions above snow surfaces, the surface reflection is particularly anisotropic due to low Sun elevations and the highly anisotropic scattering phase function of the snow crystals. The characterization of this surface reflection anisotropy is essential for satellite remote sensing over both the Arctic and Antarctica. To quantify the angular snow reflection properties, the hemispherical-directional reflectance factor (HDRF) of snow surfaces was derived from airborne measurements in Antarctica during austral summer in 2013/14. For this purpose, a digital 180<span class="inline-formula"><sup>∘</sup></span> fish-eye camera (green channel, 490–585&thinsp;<span class="inline-formula">nm</span> wavelength band) was used. The HDRF was measured for different surface roughness conditions, optical-equivalent snow grain sizes, and solar zenith angles. The airborne observations covered an area of around 1000&thinsp;<span class="inline-formula">km</span>&thinsp;<span class="inline-formula">×</span>&thinsp;1000&thinsp;<span class="inline-formula">km</span> in the vicinity of Kohnen Station (75<span class="inline-formula"><sup>∘</sup></span>0<span class="inline-formula"><sup>′</sup></span>&thinsp;S, 0<span class="inline-formula"><sup>∘</sup></span>4<span class="inline-formula"><sup>′</sup></span>&thinsp;E) at the outer part of the East Antarctic Plateau. The observations include regions with higher (coastal areas) and lower (inner Antarctica) precipitation amounts and frequencies. The digital camera provided upward, angular-dependent radiance measurements from the lower hemisphere. The comparison of the measured HDRF derived for smooth and rough snow surfaces (sastrugi) showed significant differences, which are superimposed on the diurnal cycle. By inverting a semi-empirical kernel-driven bidirectional reflectance distribution function (BRDF) model, the measured HDRF of snow surfaces was parameterized as a function of solar zenith angle, surface roughness, and optical-equivalent snow grain size. This allows a direct comparison of the HDRF measurements with the BRDF derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite product MCD43. For the analyzed cases, MODIS observations (545–565&thinsp;<span class="inline-formula">nm</span> wavelength band) generally underestimated the anisotropy of the surface reflection. The largest deviations were found for the volumetric model weight <span class="inline-formula"><i>f</i><sub>vol</sub></span> (average underestimation by a factor of 10). These deviations are likely linked to short-term changes in snow properties.</p>
first_indexed 2024-12-11T04:24:32Z
format Article
id doaj.art-7004077e7fd9425f922070321ebb82ec
institution Directory Open Access Journal
issn 1994-0416
1994-0424
language English
last_indexed 2024-12-11T04:24:32Z
publishDate 2020-11-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj.art-7004077e7fd9425f922070321ebb82ec2022-12-22T01:21:00ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242020-11-01143959397810.5194/tc-14-3959-2020Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in AntarcticaT. Carlsen0T. Carlsen1G. Birnbaum2A. Ehrlich3V. Helm4E. Jäkel5M. Schäfer6M. Wendisch7Leipzig Institute for Meteorology, University of Leipzig, Leipzig, Germanynow at: Department of Geosciences, University of Oslo, Oslo, NorwayAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, GermanyLeipzig Institute for Meteorology, University of Leipzig, Leipzig, GermanyAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, GermanyLeipzig Institute for Meteorology, University of Leipzig, Leipzig, GermanyLeipzig Institute for Meteorology, University of Leipzig, Leipzig, GermanyLeipzig Institute for Meteorology, University of Leipzig, Leipzig, Germany<p>The surface reflection of solar radiation comprises an important boundary condition for solar radiative transfer simulations. In polar regions above snow surfaces, the surface reflection is particularly anisotropic due to low Sun elevations and the highly anisotropic scattering phase function of the snow crystals. The characterization of this surface reflection anisotropy is essential for satellite remote sensing over both the Arctic and Antarctica. To quantify the angular snow reflection properties, the hemispherical-directional reflectance factor (HDRF) of snow surfaces was derived from airborne measurements in Antarctica during austral summer in 2013/14. For this purpose, a digital 180<span class="inline-formula"><sup>∘</sup></span> fish-eye camera (green channel, 490–585&thinsp;<span class="inline-formula">nm</span> wavelength band) was used. The HDRF was measured for different surface roughness conditions, optical-equivalent snow grain sizes, and solar zenith angles. The airborne observations covered an area of around 1000&thinsp;<span class="inline-formula">km</span>&thinsp;<span class="inline-formula">×</span>&thinsp;1000&thinsp;<span class="inline-formula">km</span> in the vicinity of Kohnen Station (75<span class="inline-formula"><sup>∘</sup></span>0<span class="inline-formula"><sup>′</sup></span>&thinsp;S, 0<span class="inline-formula"><sup>∘</sup></span>4<span class="inline-formula"><sup>′</sup></span>&thinsp;E) at the outer part of the East Antarctic Plateau. The observations include regions with higher (coastal areas) and lower (inner Antarctica) precipitation amounts and frequencies. The digital camera provided upward, angular-dependent radiance measurements from the lower hemisphere. The comparison of the measured HDRF derived for smooth and rough snow surfaces (sastrugi) showed significant differences, which are superimposed on the diurnal cycle. By inverting a semi-empirical kernel-driven bidirectional reflectance distribution function (BRDF) model, the measured HDRF of snow surfaces was parameterized as a function of solar zenith angle, surface roughness, and optical-equivalent snow grain size. This allows a direct comparison of the HDRF measurements with the BRDF derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite product MCD43. For the analyzed cases, MODIS observations (545–565&thinsp;<span class="inline-formula">nm</span> wavelength band) generally underestimated the anisotropy of the surface reflection. The largest deviations were found for the volumetric model weight <span class="inline-formula"><i>f</i><sub>vol</sub></span> (average underestimation by a factor of 10). These deviations are likely linked to short-term changes in snow properties.</p>https://tc.copernicus.org/articles/14/3959/2020/tc-14-3959-2020.pdf
spellingShingle T. Carlsen
T. Carlsen
G. Birnbaum
A. Ehrlich
V. Helm
E. Jäkel
M. Schäfer
M. Wendisch
Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
The Cryosphere
title Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
title_full Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
title_fullStr Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
title_full_unstemmed Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
title_short Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
title_sort parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in antarctica
url https://tc.copernicus.org/articles/14/3959/2020/tc-14-3959-2020.pdf
work_keys_str_mv AT tcarlsen parameterizinganisotropicreflectanceofsnowsurfacesfromairbornedigitalcameraobservationsinantarctica
AT tcarlsen parameterizinganisotropicreflectanceofsnowsurfacesfromairbornedigitalcameraobservationsinantarctica
AT gbirnbaum parameterizinganisotropicreflectanceofsnowsurfacesfromairbornedigitalcameraobservationsinantarctica
AT aehrlich parameterizinganisotropicreflectanceofsnowsurfacesfromairbornedigitalcameraobservationsinantarctica
AT vhelm parameterizinganisotropicreflectanceofsnowsurfacesfromairbornedigitalcameraobservationsinantarctica
AT ejakel parameterizinganisotropicreflectanceofsnowsurfacesfromairbornedigitalcameraobservationsinantarctica
AT mschafer parameterizinganisotropicreflectanceofsnowsurfacesfromairbornedigitalcameraobservationsinantarctica
AT mwendisch parameterizinganisotropicreflectanceofsnowsurfacesfromairbornedigitalcameraobservationsinantarctica