Fractional Calculus of the Extended Hypergeometric Function

Here, our aim is to demonstrate some formulae of generalization of the extended hypergeometric function by applying fractional derivative operators. Furthermore, by applying certain integral transforms on the resulting formulas and develop a new futher generalized form of the fractional kinetic equa...

Full description

Bibliographic Details
Main Authors: Şahin Recep, Yağcı Oğuz
Format: Article
Language:English
Published: Sciendo 2020-03-01
Series:Applied Mathematics and Nonlinear Sciences
Subjects:
Online Access:https://doi.org/10.2478/amns.2020.1.00035
_version_ 1818744783945859072
author Şahin Recep
Yağcı Oğuz
author_facet Şahin Recep
Yağcı Oğuz
author_sort Şahin Recep
collection DOAJ
description Here, our aim is to demonstrate some formulae of generalization of the extended hypergeometric function by applying fractional derivative operators. Furthermore, by applying certain integral transforms on the resulting formulas and develop a new futher generalized form of the fractional kinetic equation involving the generalized Gauss hypergeometric function. Also, we obtain generating functions for generalization of extended hypergeometric function..
first_indexed 2024-12-18T02:49:48Z
format Article
id doaj.art-700d358c6466425c97af9ecd44cebb41
institution Directory Open Access Journal
issn 2444-8656
language English
last_indexed 2024-12-18T02:49:48Z
publishDate 2020-03-01
publisher Sciendo
record_format Article
series Applied Mathematics and Nonlinear Sciences
spelling doaj.art-700d358c6466425c97af9ecd44cebb412022-12-21T21:23:29ZengSciendoApplied Mathematics and Nonlinear Sciences2444-86562020-03-015136938410.2478/amns.2020.1.00035Fractional Calculus of the Extended Hypergeometric FunctionŞahin Recep0Yağcı Oğuz1Department of Mathematics, Kırıkkale University, Faculty of ScienceKırıkkale, TurkeyDepartment of Mathematics, Kırıkkale University, Faculty of ScienceKırıkkale, TurkeyHere, our aim is to demonstrate some formulae of generalization of the extended hypergeometric function by applying fractional derivative operators. Furthermore, by applying certain integral transforms on the resulting formulas and develop a new futher generalized form of the fractional kinetic equation involving the generalized Gauss hypergeometric function. Also, we obtain generating functions for generalization of extended hypergeometric function..https://doi.org/10.2478/amns.2020.1.00035gamma functionbeta functionhypergeometric functionsextended hypergeometric functionintegral transformsfractional calculus operatorsgenerating functionsprimary 33c15,33c20,33c60, 33d70secondary 26a33,33c65,33c90
spellingShingle Şahin Recep
Yağcı Oğuz
Fractional Calculus of the Extended Hypergeometric Function
Applied Mathematics and Nonlinear Sciences
gamma function
beta function
hypergeometric functions
extended hypergeometric function
integral transforms
fractional calculus operators
generating functions
primary 33c15,33c20,33c60, 33d70
secondary 26a33,33c65,33c90
title Fractional Calculus of the Extended Hypergeometric Function
title_full Fractional Calculus of the Extended Hypergeometric Function
title_fullStr Fractional Calculus of the Extended Hypergeometric Function
title_full_unstemmed Fractional Calculus of the Extended Hypergeometric Function
title_short Fractional Calculus of the Extended Hypergeometric Function
title_sort fractional calculus of the extended hypergeometric function
topic gamma function
beta function
hypergeometric functions
extended hypergeometric function
integral transforms
fractional calculus operators
generating functions
primary 33c15,33c20,33c60, 33d70
secondary 26a33,33c65,33c90
url https://doi.org/10.2478/amns.2020.1.00035
work_keys_str_mv AT sahinrecep fractionalcalculusoftheextendedhypergeometricfunction
AT yagcıoguz fractionalcalculusoftheextendedhypergeometricfunction