Reducing the Power Consumption of VR Displays with a Field Sequential Color LCD

To achieve 60 pixels per degree (PPD) and 100° field of view (FoV) while keeping a reasonably high aperture ratio for active-matrix liquid crystal displays (LCDs), field sequential color (FSC) is a promising approach. We evaluate the physical properties of a high birefringence nematic LC mixture and...

Full description

Bibliographic Details
Main Authors: Zhiyong Yang, Yizhou Qian, Junyu Zou, Chia-Lun Lee, Chih-Lung Lin, Shin-Tson Wu
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/4/2635
Description
Summary:To achieve 60 pixels per degree (PPD) and 100° field of view (FoV) while keeping a reasonably high aperture ratio for active-matrix liquid crystal displays (LCDs), field sequential color (FSC) is a promising approach. We evaluate the physical properties of a high birefringence nematic LC mixture and then use these data to simulate the performance of a fringe-field switching (FFS) LCD. Such an FFS LCD exhibits a fast average gray-to-gray response time (~1.5 ms) to enable FSC operation. By removing the spatial color filters, FSC operation triples the resolution density and optical efficiency, which are critical to high-resolution density and low power consumption virtual reality applications. Wide color gamut (96.2% of the DCI-P3 standard) and superior color uniformity are also demonstrated using such an FSC LCD.
ISSN:2076-3417