Numerical investigation of Buckling behavior of steel pipeline affected by eccentric axial compression subjected to external pressure

The pipeline in service may be subjected to complicated loads (including lateral, axial, vertical loads and hydrostatic pressure in addition to internal pressure) when crossing complex geohazard regions. In this study, two kind of loads that cloud be more fundamental are numerically investigated usi...

Full description

Bibliographic Details
Main Authors: K. Badamchi, H. Showkati
Format: Article
Language:fas
Published: Sharif University of Technology 2022-05-01
Series:مهندسی عمران شریف
Subjects:
Online Access:https://sjce.journals.sharif.edu/article_22607_874bccba0b348fea2d80c83b79ad7a14.pdf
_version_ 1797742454742450176
author K. Badamchi
H. Showkati
author_facet K. Badamchi
H. Showkati
author_sort K. Badamchi
collection DOAJ
description The pipeline in service may be subjected to complicated loads (including lateral, axial, vertical loads and hydrostatic pressure in addition to internal pressure) when crossing complex geohazard regions. In this study, two kind of loads that cloud be more fundamental are numerically investigated using finite element method. The loads imposed on pipelines depend on the pipe content and the environment that the pipeline is passing through. Axial compression can arise within pipelines from thermal loads arising from hot hydrocarbon passage from offshore oil wells to an onshore station or can arise from anchor forces acting on pipelines and External pressure can arise within pipelines from hydrostatic pressure, sudden valve closures, and pump failures. It is very important to select suitable geometric imperfection form to exact investigation behavior of pipelines and mechanism of failures. In order to verification response of numerical analyses, one of the experimental results is compared with numerical result and concluded that there is a good agreement between results. Meanwhile, the effect of the eccentric axial compression, pipe diameter to wall thickness ratio (D/t) on the buckling external pressure are studied. The interaction between the axial load and external pressure was graphically demonstrated and compared for different geometrical ratios through numerical analysis. During analysis, the eccentric axial compression load in the pipe was primarily induced and maintained constant less than its capacity. Subsequently, the uniform peripheral pressure was gradually increased until failure, and, besides, the response of some specimens was separately investigated under pure external pressure and axial compression load. It was found that the D/t ratio is the decisive parameter to specify the buckling behavior of steel pipelines and type of created failure mode subjected to axial compression. Some significant conclusions were drawn based on extensive parametric studies. The buckling external pressure reduces with the increase of pre-axial compression and diameter to thickness ratio.
first_indexed 2024-03-12T14:41:04Z
format Article
id doaj.art-703b1003d50b499db75a5fe76d7e3da4
institution Directory Open Access Journal
issn 2676-4768
2676-4776
language fas
last_indexed 2024-03-12T14:41:04Z
publishDate 2022-05-01
publisher Sharif University of Technology
record_format Article
series مهندسی عمران شریف
spelling doaj.art-703b1003d50b499db75a5fe76d7e3da42023-08-16T07:04:47ZfasSharif University of Technologyمهندسی عمران شریف2676-47682676-47762022-05-0138.21.113514310.24200/j30.2021.58963.301422607Numerical investigation of Buckling behavior of steel pipeline affected by eccentric axial compression subjected to external pressureK. Badamchi0H. Showkati1F‌a‌c‌u‌l‌t‌y o‌f C‌i‌v‌i‌l E‌n‌g‌i‌n‌e‌e‌r‌i‌n‌g U‌r‌m‌i‌a U‌n‌i‌v‌e‌r‌s‌i‌t‌yF‌a‌c‌u‌l‌t‌y o‌f C‌i‌v‌i‌l E‌n‌g‌i‌n‌e‌e‌r‌i‌n‌g U‌r‌m‌i‌a U‌n‌i‌v‌e‌r‌s‌i‌t‌yThe pipeline in service may be subjected to complicated loads (including lateral, axial, vertical loads and hydrostatic pressure in addition to internal pressure) when crossing complex geohazard regions. In this study, two kind of loads that cloud be more fundamental are numerically investigated using finite element method. The loads imposed on pipelines depend on the pipe content and the environment that the pipeline is passing through. Axial compression can arise within pipelines from thermal loads arising from hot hydrocarbon passage from offshore oil wells to an onshore station or can arise from anchor forces acting on pipelines and External pressure can arise within pipelines from hydrostatic pressure, sudden valve closures, and pump failures. It is very important to select suitable geometric imperfection form to exact investigation behavior of pipelines and mechanism of failures. In order to verification response of numerical analyses, one of the experimental results is compared with numerical result and concluded that there is a good agreement between results. Meanwhile, the effect of the eccentric axial compression, pipe diameter to wall thickness ratio (D/t) on the buckling external pressure are studied. The interaction between the axial load and external pressure was graphically demonstrated and compared for different geometrical ratios through numerical analysis. During analysis, the eccentric axial compression load in the pipe was primarily induced and maintained constant less than its capacity. Subsequently, the uniform peripheral pressure was gradually increased until failure, and, besides, the response of some specimens was separately investigated under pure external pressure and axial compression load. It was found that the D/t ratio is the decisive parameter to specify the buckling behavior of steel pipelines and type of created failure mode subjected to axial compression. Some significant conclusions were drawn based on extensive parametric studies. The buckling external pressure reduces with the increase of pre-axial compression and diameter to thickness ratio.https://sjce.journals.sharif.edu/article_22607_874bccba0b348fea2d80c83b79ad7a14.pdfsteel pipelineabaqusexternal pressureaxial compressionimperfectionexperimental
spellingShingle K. Badamchi
H. Showkati
Numerical investigation of Buckling behavior of steel pipeline affected by eccentric axial compression subjected to external pressure
مهندسی عمران شریف
steel pipeline
abaqus
external pressure
axial compression
imperfection
experimental
title Numerical investigation of Buckling behavior of steel pipeline affected by eccentric axial compression subjected to external pressure
title_full Numerical investigation of Buckling behavior of steel pipeline affected by eccentric axial compression subjected to external pressure
title_fullStr Numerical investigation of Buckling behavior of steel pipeline affected by eccentric axial compression subjected to external pressure
title_full_unstemmed Numerical investigation of Buckling behavior of steel pipeline affected by eccentric axial compression subjected to external pressure
title_short Numerical investigation of Buckling behavior of steel pipeline affected by eccentric axial compression subjected to external pressure
title_sort numerical investigation of buckling behavior of steel pipeline affected by eccentric axial compression subjected to external pressure
topic steel pipeline
abaqus
external pressure
axial compression
imperfection
experimental
url https://sjce.journals.sharif.edu/article_22607_874bccba0b348fea2d80c83b79ad7a14.pdf
work_keys_str_mv AT kbadamchi numericalinvestigationofbucklingbehaviorofsteelpipelineaffectedbyeccentricaxialcompressionsubjectedtoexternalpressure
AT hshowkati numericalinvestigationofbucklingbehaviorofsteelpipelineaffectedbyeccentricaxialcompressionsubjectedtoexternalpressure