$L^2$ estimates and existence theorems for $\protect \overline{\partial }_b$ on Lipschitz boundaries of $Q$-pseudoconvex domains
On a bounded $q$-pseudoconvex domain $\Omega $ in $\mathbb{C}^{n}$ with Lipschitz boundary $b\Omega $, we prove the $L^2$ existence theorems of the $\overline{\partial }_b$-operator on $b\Omega $. This yields the closed range property of $\overline{\partial }_b$ and its adjoint $\overline{\partial }...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2020-07-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.43/ |
_version_ | 1797651542292037632 |
---|---|
author | Saber, Sayed |
author_facet | Saber, Sayed |
author_sort | Saber, Sayed |
collection | DOAJ |
description | On a bounded $q$-pseudoconvex domain $\Omega $ in $\mathbb{C}^{n}$ with Lipschitz boundary $b\Omega $, we prove the $L^2$ existence theorems of the $\overline{\partial }_b$-operator on $b\Omega $. This yields the closed range property of $\overline{\partial }_b$ and its adjoint $\overline{\partial }_b^*$. As an application, we establish the $L^2$-existence theorems and regularity theorems for the $\overline{\partial }_b$-Neumann operator. |
first_indexed | 2024-03-11T16:17:18Z |
format | Article |
id | doaj.art-703cb9ace8944e0f93f07cf87334c804 |
institution | Directory Open Access Journal |
issn | 1778-3569 |
language | English |
last_indexed | 2024-03-11T16:17:18Z |
publishDate | 2020-07-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj.art-703cb9ace8944e0f93f07cf87334c8042023-10-24T14:19:02ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692020-07-01358443545810.5802/crmath.4310.5802/crmath.43$L^2$ estimates and existence theorems for $\protect \overline{\partial }_b$ on Lipschitz boundaries of $Q$-pseudoconvex domainsSaber, Sayed0Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, EgyptOn a bounded $q$-pseudoconvex domain $\Omega $ in $\mathbb{C}^{n}$ with Lipschitz boundary $b\Omega $, we prove the $L^2$ existence theorems of the $\overline{\partial }_b$-operator on $b\Omega $. This yields the closed range property of $\overline{\partial }_b$ and its adjoint $\overline{\partial }_b^*$. As an application, we establish the $L^2$-existence theorems and regularity theorems for the $\overline{\partial }_b$-Neumann operator.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.43/ |
spellingShingle | Saber, Sayed $L^2$ estimates and existence theorems for $\protect \overline{\partial }_b$ on Lipschitz boundaries of $Q$-pseudoconvex domains Comptes Rendus. Mathématique |
title | $L^2$ estimates and existence theorems for $\protect \overline{\partial }_b$ on Lipschitz boundaries of $Q$-pseudoconvex domains |
title_full | $L^2$ estimates and existence theorems for $\protect \overline{\partial }_b$ on Lipschitz boundaries of $Q$-pseudoconvex domains |
title_fullStr | $L^2$ estimates and existence theorems for $\protect \overline{\partial }_b$ on Lipschitz boundaries of $Q$-pseudoconvex domains |
title_full_unstemmed | $L^2$ estimates and existence theorems for $\protect \overline{\partial }_b$ on Lipschitz boundaries of $Q$-pseudoconvex domains |
title_short | $L^2$ estimates and existence theorems for $\protect \overline{\partial }_b$ on Lipschitz boundaries of $Q$-pseudoconvex domains |
title_sort | l 2 estimates and existence theorems for protect overline partial b on lipschitz boundaries of q pseudoconvex domains |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.43/ |
work_keys_str_mv | AT sabersayed l2estimatesandexistencetheoremsforprotectoverlinepartialbonlipschitzboundariesofqpseudoconvexdomains |