Electroencephalographic (EEG) based Deep Learning (DL): A Comparative Review
Deep learning (DL) has recently shown great promise in supporting knowledge of electroencephalographic (EEG) as a result of its ability to discover visual features (feature representation) from original (raw) data. This review will look at the latest developments in the research area of the EEG by...
Auteurs principaux: | Riyadh Salam Mohammed, Ammar A. Al-Hamadani |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Al-Iraqia University - College of Engineering
2023-03-01
|
Collection: | Al-Iraqia Journal for Scientific Engineering Research |
Sujets: | |
Accès en ligne: | https://ijser.aliraqia.edu.iq/index.php/ijser/article/view/59 |
Documents similaires
-
Automated Rest EEG-Based Diagnosis of Depression and Schizophrenia Using a Deep Convolutional Neural Network
par: Zhiming Wang, et autres
Publié: (2022-01-01) -
A Systematic Review of Electroencephalography Open Datasets and Their Usage With Deep Learning Models
par: Alberto Nogales, et autres
Publié: (2023-01-01) -
Emotion Detection from EEG Signals Using Machine Deep Learning Models
par: João Vitor Marques Rabelo Fernandes, et autres
Publié: (2024-08-01) -
A Review on Artificial Intelligence methods and Signal Processing for EEG-Based lie and Truth Identification
par: Hamza Waleed Hamza, et autres
Publié: (2024-06-01) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
par: Wei Zeng, et autres
Publié: (2023-05-01)