Electroencephalographic (EEG) based Deep Learning (DL): A Comparative Review
Deep learning (DL) has recently shown great promise in supporting knowledge of electroencephalographic (EEG) as a result of its ability to discover visual features (feature representation) from original (raw) data. This review will look at the latest developments in the research area of the EEG by...
Главные авторы: | Riyadh Salam Mohammed, Ammar A. Al-Hamadani |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Al-Iraqia University - College of Engineering
2023-03-01
|
Серии: | Al-Iraqia Journal for Scientific Engineering Research |
Предметы: | |
Online-ссылка: | https://ijser.aliraqia.edu.iq/index.php/ijser/article/view/59 |
Схожие документы
-
Automated Rest EEG-Based Diagnosis of Depression and Schizophrenia Using a Deep Convolutional Neural Network
по: Zhiming Wang, и др.
Опубликовано: (2022-01-01) -
A Systematic Review of Electroencephalography Open Datasets and Their Usage With Deep Learning Models
по: Alberto Nogales, и др.
Опубликовано: (2023-01-01) -
Emotion Detection from EEG Signals Using Machine Deep Learning Models
по: João Vitor Marques Rabelo Fernandes, и др.
Опубликовано: (2024-08-01) -
A Review on Artificial Intelligence methods and Signal Processing for EEG-Based lie and Truth Identification
по: Hamza Waleed Hamza, и др.
Опубликовано: (2024-06-01) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
по: Wei Zeng, и др.
Опубликовано: (2023-05-01)