Aerosols on the Tropical Island of La Réunion (21°S, 55°E): Assessment of Climatology, Origin of Variability and Trend

Aerosols are essential climate variables that need to be observed at a global scale to monitor the evolution of the atmospheric composition and potential climate impacts. We used the measurements performed over the May 2007–December 2019 period by a ground-based sun photometer installed at the islan...

Full description

Bibliographic Details
Main Authors: Valentin Duflot, Nelson Bègue, Marie-Léa Pouliquen, Philippe Goloub, Jean-Marc Metzger
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/19/4945
Description
Summary:Aerosols are essential climate variables that need to be observed at a global scale to monitor the evolution of the atmospheric composition and potential climate impacts. We used the measurements performed over the May 2007–December 2019 period by a ground-based sun photometer installed at the island of La Réunion (21°S, 55°E), together with a linear regression fitting model, to assess the climatology and types of aerosols reaching this observation site located in a sparsely documented pristine area, and the forcings responsible for the variability of the observed aerosol optical depth (AOD) and related trend. The climatology of the aerosol optical depth (AOD) at 440 nm (AOD<sub>440</sub>) and Ångström exponent between 500 and 870 nm (α) revealed that sea salts could be considered as the La Réunion AOD<sub>440</sub> and α baselines (0.06 ± 0.03 and 0.61 ± 0.40, respectively, from December to August), which were mainly modulated by biomass burning (BB) plumes passing over La Réunion (causing a doubling of AOD<sub>440</sub> and α up to 0.13 ± 0.07 and 1.06 ± 0.34, respectively, in October). This was confirmed by the retrieved aerosol volume size distributions showing that the coarse-mode (fine-mode) dominated the total volume concentration for AOD<sub>440</sub> lower (higher) than 0.2 with a mean radius equal to 3 μm (0.15 μm). The main contribution to the AOD<sub>440</sub> variability over La Réunion was evaluated to be the BB activity (67.4 ± 28.1%), followed by marine aerosols (16.3 ± 4.2%) and large-scale atmospheric structures (5.5 ± 1.7%). The calculated trend for AOD<sub>440</sub> equaled 0.02 ± 0.01 per decade (2.6 ± 1.3% per year). These results provide a scientific reference base for upcoming studies dedicated to the quantification of the impact of wildfire emissions on the southwestern Indian Ocean’s atmospheric composition and radiative balance.
ISSN:2072-4292