Computation of Traffic Time Series for Large Populations of IoT Devices

The Internet of Things (IoT) contains sets of hundreds of thousands of network-enabled devices communicating with central controlling nodes or information collectors. The correct behaviour of these devices can be monitored by inspecting the traffic that they create. This passive monitoring methodolo...

Full description

Bibliographic Details
Main Authors: Mikel Izal, Daniel Morató, Eduardo Magaña, Santiago García-Jiménez
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/19/1/78
Description
Summary:The Internet of Things (IoT) contains sets of hundreds of thousands of network-enabled devices communicating with central controlling nodes or information collectors. The correct behaviour of these devices can be monitored by inspecting the traffic that they create. This passive monitoring methodology allows the detection of device failures or security breaches. However, the creation of hundreds of thousands of traffic time series in real time is not achievable without highly optimised algorithms. We herein compare three algorithms for time-series extraction from traffic captured in real time. We demonstrate how a single-core central processing unit (CPU) can extract more than three bidirectional traffic time series for each one of more than 20,000 IoT devices in real time using the algorithm DStries with recursive search. This proposal also enables the fast reconfiguration of the analysis computer when new IoT devices are added to the network.
ISSN:1424-8220