Slow Growth for Universal Harmonic Functions

<p/> <p>Given any continuous increasing function <inline-formula> <graphic file="1029-242X-2010-253690-i1.gif"/></inline-formula> such that <inline-formula> <graphic file="1029-242X-2010-253690-i2.gif"/></inline-formula>, we show th...

Full description

Bibliographic Details
Main Authors: Rodenas Francisco, G&#243;mez-Collado MCarmen, Mart&#237;nez-Gim&#233;nez F&#233;lix, Peris Alfredo
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2010/253690
Description
Summary:<p/> <p>Given any continuous increasing function <inline-formula> <graphic file="1029-242X-2010-253690-i1.gif"/></inline-formula> such that <inline-formula> <graphic file="1029-242X-2010-253690-i2.gif"/></inline-formula>, we show that there are harmonic functions <inline-formula> <graphic file="1029-242X-2010-253690-i3.gif"/></inline-formula> on <inline-formula> <graphic file="1029-242X-2010-253690-i4.gif"/></inline-formula> satisfying the inequality <inline-formula> <graphic file="1029-242X-2010-253690-i5.gif"/></inline-formula> for every <inline-formula> <graphic file="1029-242X-2010-253690-i6.gif"/></inline-formula>, which are universal with respect to translations. This answers positively a problem of D. H. Armitage (2005). The proof combines techniques of Dynamical Systems and Operator Theory, and it does not need any result from Harmonic Analysis.</p>
ISSN:1025-5834
1029-242X