New asymptotic expansions on hyperfactorial functions

In this paper, by using the Bernoulli numbers and the exponential complete Bell polynomials, we establish four general asymptotic expansions for the hyperfactorial functions $\prod _{k=1}^n {k^{k^q}}$, which have only odd power terms or even power terms. We derive the recurrences for the parameter s...

Full description

Bibliographic Details
Main Author: Xu, Jianjun
Format: Article
Language:English
Published: Académie des sciences 2021-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.73/
_version_ 1797651542518530048
author Xu, Jianjun
author_facet Xu, Jianjun
author_sort Xu, Jianjun
collection DOAJ
description In this paper, by using the Bernoulli numbers and the exponential complete Bell polynomials, we establish four general asymptotic expansions for the hyperfactorial functions $\prod _{k=1}^n {k^{k^q}}$, which have only odd power terms or even power terms. We derive the recurrences for the parameter sequences in these four general expansions and give some special asymptotic expansions by these recurrences.
first_indexed 2024-03-11T16:17:18Z
format Article
id doaj.art-706a469091694edc9f3c7037f9a98c30
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:17:18Z
publishDate 2021-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-706a469091694edc9f3c7037f9a98c302023-10-24T14:18:48ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692021-01-013589-1097198010.5802/crmath.7310.5802/crmath.73New asymptotic expansions on hyperfactorial functionsXu, Jianjun0Institute of Mathematics, Jilin University, Changchun 130012, ChinaIn this paper, by using the Bernoulli numbers and the exponential complete Bell polynomials, we establish four general asymptotic expansions for the hyperfactorial functions $\prod _{k=1}^n {k^{k^q}}$, which have only odd power terms or even power terms. We derive the recurrences for the parameter sequences in these four general expansions and give some special asymptotic expansions by these recurrences.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.73/
spellingShingle Xu, Jianjun
New asymptotic expansions on hyperfactorial functions
Comptes Rendus. Mathématique
title New asymptotic expansions on hyperfactorial functions
title_full New asymptotic expansions on hyperfactorial functions
title_fullStr New asymptotic expansions on hyperfactorial functions
title_full_unstemmed New asymptotic expansions on hyperfactorial functions
title_short New asymptotic expansions on hyperfactorial functions
title_sort new asymptotic expansions on hyperfactorial functions
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.73/
work_keys_str_mv AT xujianjun newasymptoticexpansionsonhyperfactorialfunctions