Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City

Air pollution is one of the most pressing modern-day issues in cities around the world. However, most cities have adopted air quality measurement devices that only measure the past pollution levels without paying attention to the influencing factors. To obtain preliminary pollution information with...

Full description

Bibliographic Details
Main Authors: Bulgansaikhan Baldorj, Munkherdene Tsagaan, Lodoysamba Sereeter, Amanjol Bulkhbai
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/1/71
_version_ 1797495886035550208
author Bulgansaikhan Baldorj
Munkherdene Tsagaan
Lodoysamba Sereeter
Amanjol Bulkhbai
author_facet Bulgansaikhan Baldorj
Munkherdene Tsagaan
Lodoysamba Sereeter
Amanjol Bulkhbai
author_sort Bulgansaikhan Baldorj
collection DOAJ
description Air pollution is one of the most pressing modern-day issues in cities around the world. However, most cities have adopted air quality measurement devices that only measure the past pollution levels without paying attention to the influencing factors. To obtain preliminary pollution information with regard to environmental factors, we developed a variational autoencoder and feedforward neural network-based embedded generative model to examine the relationship between air quality and the effects of environmental factors. In the model, actual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><msub><mi>M</mi><mrow><mn>2.5</mn></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><msub><mi>M</mi><mrow><mn>10</mn></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>O</mi></mrow></semantics></math></inline-formula> measurements from 2016 to 2020 were used, which were assembled from 15 differently located ground monitoring stations in Ulaanbaatar city. A wide range of weather and fuel measurements were used as the data for the influencing factors, and were collected over the same period as the air pollution data were recorded. The prediction results concerned all measurement stations, and the results were visualized as a spatial–temporal distribution of pollution and the performance of individual stations. A cross-validated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> was used to estimate the entire pollution distribution through the regions as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>: 0.81, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><msub><mi>M</mi><mrow><mn>2.5</mn></mrow></msub></mrow></semantics></math></inline-formula>: 0.76, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><msub><mi>M</mi><mrow><mn>10</mn></mrow></msub></mrow></semantics></math></inline-formula>: 0.89, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>O</mi></mrow></semantics></math></inline-formula>: 0.83. Pearson’s chi-squared tests were used for assessing each measurement station, and the contingency tables represent a high correlation between the actual and model results. The model can be applied to perform specific analysis of the interdependencies between pollution and environmental factors, and the performance of the model improves with long-range data.
first_indexed 2024-03-10T01:56:01Z
format Article
id doaj.art-707a980475804f4bb87347e41510f54c
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-10T01:56:01Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-707a980475804f4bb87347e41510f54c2023-11-23T12:56:40ZengMDPI AGAtmosphere2073-44332021-12-011317110.3390/atmos13010071Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar CityBulgansaikhan Baldorj0Munkherdene Tsagaan1Lodoysamba Sereeter2Amanjol Bulkhbai3Department of Physics, Mongolian University of Science and Technology, Ulaanbaatar 14191, MongoliaDepartment of Mathematics, Mongolian University of Science and Technology, Ulaanbaatar 14191, MongoliaDepartment of Engineering, German-Mongolian Institute for Resource and Technology, Ulaanbaatar 14191, MongoliaDepartment of Remote Sensing, Information and Research Institute of Meteorology, Hydrology and Environment, Ulaanbaatar 15160, MongoliaAir pollution is one of the most pressing modern-day issues in cities around the world. However, most cities have adopted air quality measurement devices that only measure the past pollution levels without paying attention to the influencing factors. To obtain preliminary pollution information with regard to environmental factors, we developed a variational autoencoder and feedforward neural network-based embedded generative model to examine the relationship between air quality and the effects of environmental factors. In the model, actual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><msub><mi>M</mi><mrow><mn>2.5</mn></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><msub><mi>M</mi><mrow><mn>10</mn></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>O</mi></mrow></semantics></math></inline-formula> measurements from 2016 to 2020 were used, which were assembled from 15 differently located ground monitoring stations in Ulaanbaatar city. A wide range of weather and fuel measurements were used as the data for the influencing factors, and were collected over the same period as the air pollution data were recorded. The prediction results concerned all measurement stations, and the results were visualized as a spatial–temporal distribution of pollution and the performance of individual stations. A cross-validated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> was used to estimate the entire pollution distribution through the regions as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>: 0.81, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><msub><mi>M</mi><mrow><mn>2.5</mn></mrow></msub></mrow></semantics></math></inline-formula>: 0.76, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><msub><mi>M</mi><mrow><mn>10</mn></mrow></msub></mrow></semantics></math></inline-formula>: 0.89, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>O</mi></mrow></semantics></math></inline-formula>: 0.83. Pearson’s chi-squared tests were used for assessing each measurement station, and the contingency tables represent a high correlation between the actual and model results. The model can be applied to perform specific analysis of the interdependencies between pollution and environmental factors, and the performance of the model improves with long-range data.https://www.mdpi.com/2073-4433/13/1/71air pollutionembedded generative modelenvironmental factor effectlatent variable
spellingShingle Bulgansaikhan Baldorj
Munkherdene Tsagaan
Lodoysamba Sereeter
Amanjol Bulkhbai
Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City
Atmosphere
air pollution
embedded generative model
environmental factor effect
latent variable
title Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City
title_full Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City
title_fullStr Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City
title_full_unstemmed Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City
title_short Embedded Generative Air Pollution Model with Variational Autoencoder and Environmental Factor Effect in Ulaanbaatar City
title_sort embedded generative air pollution model with variational autoencoder and environmental factor effect in ulaanbaatar city
topic air pollution
embedded generative model
environmental factor effect
latent variable
url https://www.mdpi.com/2073-4433/13/1/71
work_keys_str_mv AT bulgansaikhanbaldorj embeddedgenerativeairpollutionmodelwithvariationalautoencoderandenvironmentalfactoreffectinulaanbaatarcity
AT munkherdenetsagaan embeddedgenerativeairpollutionmodelwithvariationalautoencoderandenvironmentalfactoreffectinulaanbaatarcity
AT lodoysambasereeter embeddedgenerativeairpollutionmodelwithvariationalautoencoderandenvironmentalfactoreffectinulaanbaatarcity
AT amanjolbulkhbai embeddedgenerativeairpollutionmodelwithvariationalautoencoderandenvironmentalfactoreffectinulaanbaatarcity