Summary: | In this paper, the effect of substitutional Mo amounts in internal friction and interstitial diffusion mechanisms was analyzed in Ti-15Zr-based alloys. Mechanical spectroscopy was obtained from room temperature up to 730 K with frequencies between 1 Hz and 40 Hz. Internal friction spectra were composed by anelastic relaxation peaks in β-type alloys (metastable and stable), due to stress-induced ordering of oxygen and nitrogen interstitially in octahedral sites of the bcc crystalline structure. Peak decomposition analysis exhibited interactions between matrix-interstitial (Ti-O and Ti-N), substitutional-interstitial (Zr-O, Mo-O and Mo-N), and clusters (Ti-O-O and Zr-O-O). The diffusion results showed that the introduction of Mo facilitates the diffusion of interstitial elements in the metallic matrix.
|