Summary: | We develop a mesoscopic field theory for the collective nonequilibrium dynamics of multicomponent mixtures of interacting active (i.e., motile) and passive (i.e., nonmotile) colloidal particles with isometric shape in two spatial dimensions. By a stability analysis of the field theory, we obtain equations for the spinodal that describes the onset of a motility-induced instability leading to cluster formation in such mixtures. The prediction for the spinodal is found to be in good agreement with particle-resolved computer simulations. Furthermore, we show that in active-passive mixtures the spinodal instability can be of two different types. One type is associated with a stationary bifurcation and occurs also in one-component active systems, whereas the other type is associated with a Hopf bifurcation and can occur only in active-passive mixtures. Remarkably, the Hopf bifurcation leads to moving clusters. This explains recent results from simulations of active-passive particle mixtures, where moving clusters and interfaces that are not seen in the corresponding one-component systems have been observed.
|