A Graph-Space Optimal Transport Approach Based on Kaniadakis <i>κ</i>-Gaussian Distribution for Inverse Problems Related to Wave Propagation

Data-centric inverse problems are a process of inferring physical attributes from indirect measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to obtain a quantitative physical model by comparing the wave equation solution with observed data, optimizing an objec...

Full description

Bibliographic Details
Main Authors: Sérgio Luiz E. F. da Silva, João M. de Araújo, Erick de la Barra, Gilberto Corso
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/7/990
Description
Summary:Data-centric inverse problems are a process of inferring physical attributes from indirect measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to obtain a quantitative physical model by comparing the wave equation solution with observed data, optimizing an objective function. However, the FWI is strenuously dependent on a robust objective function, especially for dealing with cycle-skipping issues and non-Gaussian noises in the dataset. In this work, we present an objective function based on the Kaniadakis <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-Gaussian distribution and the optimal transport (OT) theory to mitigate non-Gaussian noise effects and phase ambiguity concerns that cause cycle skipping. We construct the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-objective function using the probabilistic maximum likelihood procedure and include it within a well-posed version of the original OT formulation, known as the Kantorovich–Rubinstein metric. We represent the data in the graph space to satisfy the probability axioms required by the Kantorovich–Rubinstein framework. We call our proposal the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-Graph-Space Optimal Transport FWI (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-GSOT-FWI). The results suggest that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-GSOT-FWI is an effective procedure to circumvent the effects of non-Gaussian noise and cycle-skipping problems. They also show that the Kaniadakis <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-statistics significantly improve the FWI objective function convergence, resulting in higher-resolution models than classical techniques, especially when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>κ</mi><mo>=</mo><mn>0.6</mn></mrow></semantics></math></inline-formula>.
ISSN:1099-4300