Summary: | Abstract Background Atrioventricular (AV) delay could affect AV and ventricular synchrony in cardiac resynchronization therapy (CRT). Strategies to optimize AV delay according to optimal AV synchrony (AVopt-AV) or ventricular synchrony (AVopt-V) would potentially be discordant. This study aimed to explore a new AV delay optimization algorithm guided by electrograms to obtain the maximum integrative effects of AV and ventricular resynchronization (opt-AV). Methods Forty-nine patients with CRT were enrolled. AVopt-AV was measured through the Ritter method. AVopt-V was obtained by yielding the narrowest QRS. The opt-AV was considered to be AVopt-AV or AVopt-V when their difference was < 20 ms, and to be the AV delay with the maximal aortic velocity–time integral between AVopt-AV and AVopt-V when their difference was > 20 ms. Results The results showed that sensing/pacing AVopt-AV (SAVopt-AV/PAVopt-AV) were correlated with atrial activation time (Pend-As/Pend-Ap) (P < 0.05). Sensing/pacing AVopt-V (SAVopt-V/PAVopt-V) was correlated with the intrinsic AV conduction time (As-Vs/Ap-Vs) (P < 0.01). The percentages of patients with more than 20 ms differences between SAVopt-AV/PAVopt-AV and SAVopt-V/PAVopt-V were 62.9% and 57.1%, respectively. Among them, opt-AV was linearly correlated with SAVopt-AV/PAVopt-AV and SAVopt-V/PAVopt-V. The sensing opt-AV (opt-SAV) = 0.1 × SAVopt-AV + 0.4 × SAVopt-V + 70 ms (R2 = 0.665, P < 0.01) and the pacing opt-AV (opt-PAV) = 0.25 × PAVopt-AV + 0.5 × PAVopt-V + 30 ms (R2 = 0.560, P < 0.01). Conclusion The SAVopt-AV/PAVopt-AV and SAVopt-V/PAVopt-V were correlated with the atrial activation time and the intrinsic AV conduction interval respectively. Almost half of the patients had a > 20 ms difference between SAVopt-AV/PAVopt-AV and SAVopt-V/PAVopt-V. The opt-AV could be estimated based on electrogram parameters.
|