Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation

We prove new results on Ulam stability of the nonhomogeneous Cauchy functional equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><...

Full description

Bibliographic Details
Main Authors: El-sayed El-hady, Janusz Brzdęk
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/10/1695
_version_ 1797498121104654336
author El-sayed El-hady
Janusz Brzdęk
author_facet El-sayed El-hady
Janusz Brzdęk
author_sort El-sayed El-hady
collection DOAJ
description We prove new results on Ulam stability of the nonhomogeneous Cauchy functional equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>+</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></semantics></math></inline-formula> in the class of mappings <i>f</i> from a square symmetric groupoid <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mo>+</mo><mo>)</mo></mrow></semantics></math></inline-formula> into the set of reals <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>. The mapping <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>:</mo><msup><mi>H</mi><mn>2</mn></msup><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> is assumed to be given and satisfy some weak natural assumption. The equation arises naturally, e.g., in the theory of information in a description of generating functions of branching measures of information. Moreover, we provide a suitable example of application of our results in this area at the very end of this paper. The main tool used in the proofs is the Banach limit.
first_indexed 2024-03-10T03:28:57Z
format Article
id doaj.art-709774f129434c2a9ca55bc405da7e69
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:28:57Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-709774f129434c2a9ca55bc405da7e692023-11-23T12:01:04ZengMDPI AGMathematics2227-73902022-05-011010169510.3390/math10101695Banach Limit and Ulam Stability of Nonhomogeneous Cauchy EquationEl-sayed El-hady0Janusz Brzdęk1Mathematics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi ArabiaFaculty of Applied Mathematics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, PolandWe prove new results on Ulam stability of the nonhomogeneous Cauchy functional equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>+</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></semantics></math></inline-formula> in the class of mappings <i>f</i> from a square symmetric groupoid <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mo>+</mo><mo>)</mo></mrow></semantics></math></inline-formula> into the set of reals <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>. The mapping <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>:</mo><msup><mi>H</mi><mn>2</mn></msup><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula> is assumed to be given and satisfy some weak natural assumption. The equation arises naturally, e.g., in the theory of information in a description of generating functions of branching measures of information. Moreover, we provide a suitable example of application of our results in this area at the very end of this paper. The main tool used in the proofs is the Banach limit.https://www.mdpi.com/2227-7390/10/10/1695Banach limitUlam stabilitynonhomogeneous Cauchy functional equation
spellingShingle El-sayed El-hady
Janusz Brzdęk
Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation
Mathematics
Banach limit
Ulam stability
nonhomogeneous Cauchy functional equation
title Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation
title_full Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation
title_fullStr Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation
title_full_unstemmed Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation
title_short Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation
title_sort banach limit and ulam stability of nonhomogeneous cauchy equation
topic Banach limit
Ulam stability
nonhomogeneous Cauchy functional equation
url https://www.mdpi.com/2227-7390/10/10/1695
work_keys_str_mv AT elsayedelhady banachlimitandulamstabilityofnonhomogeneouscauchyequation
AT januszbrzdek banachlimitandulamstabilityofnonhomogeneouscauchyequation