Existence of entire radial solutions to a class of quasilinear elliptic equations and systems

In this paper, by a monotone iterative method and the Arzèla-Ascoli theorem, we obtain the existence of entire positive radial solutions to the following quasilinear elliptic equations \[\operatorname{div}(\phi_1(|\nabla u|) \nabla u)+a_1(|x|) \phi_1(|\nabla u|) |\nabla u|=b_1(|x|)f(u), \qquad x\in...

Full description

Bibliographic Details
Main Author: Song Zhou
Format: Article
Language:English
Published: University of Szeged 2016-06-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4782
Description
Summary:In this paper, by a monotone iterative method and the Arzèla-Ascoli theorem, we obtain the existence of entire positive radial solutions to the following quasilinear elliptic equations \[\operatorname{div}(\phi_1(|\nabla u|) \nabla u)+a_1(|x|) \phi_1(|\nabla u|) |\nabla u|=b_1(|x|)f(u), \qquad x\in \mathbb R^N,\] and systems \begin{cases} \operatorname{div}(\phi_1(|\nabla u|) \nabla u)+a_1(|x|) \phi_1(|\nabla u|) |\nabla u| =b_1(|x|)f_1(u, v), &x\in \mathbb R^N, \\ \operatorname{div}(\phi_2(|\nabla v|) \nabla v) +a_2(|x|)\phi_2(|\nabla v|) |\nabla v|=b_2(|x|)f_2(u, v), &x\in \mathbb R^N, \end{cases} under simple conditions on $f$, $f_i$, $a_i$ and $b_i$ ($i=1, 2$).
ISSN:1417-3875