Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics

<p>The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible foldi...

Full description

Bibliographic Details
Main Authors: G. Pintér, K. F. Hohmann, J. T. Grün, J. Wirmer-Bartoschek, C. Glaubitz, B. Fürtig, H. Schwalbe
Format: Article
Language:English
Published: Copernicus Publications 2021-05-01
Series:Magnetic Resonance
Online Access:https://mr.copernicus.org/articles/2/291/2021/mr-2-291-2021.pdf
_version_ 1818690367891963904
author G. Pintér
K. F. Hohmann
J. T. Grün
J. Wirmer-Bartoschek
C. Glaubitz
B. Fürtig
H. Schwalbe
author_facet G. Pintér
K. F. Hohmann
J. T. Grün
J. Wirmer-Bartoschek
C. Glaubitz
B. Fürtig
H. Schwalbe
author_sort G. Pintér
collection DOAJ
description <p>The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.</p>
first_indexed 2024-12-17T12:24:53Z
format Article
id doaj.art-70b11156150e4eab8d727ecc445982ab
institution Directory Open Access Journal
issn 2699-0016
language English
last_indexed 2024-12-17T12:24:53Z
publishDate 2021-05-01
publisher Copernicus Publications
record_format Article
series Magnetic Resonance
spelling doaj.art-70b11156150e4eab8d727ecc445982ab2022-12-21T21:48:49ZengCopernicus PublicationsMagnetic Resonance2699-00162021-05-01229132010.5194/mr-2-291-2021Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamicsG. Pintér0K. F. Hohmann1J. T. Grün2J. Wirmer-Bartoschek3C. Glaubitz4B. Fürtig5H. Schwalbe6Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, GermanyInstitute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, GermanyInstitute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, GermanyInstitute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, GermanyInstitute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, GermanyInstitute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, GermanyInstitute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany<p>The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.</p>https://mr.copernicus.org/articles/2/291/2021/mr-2-291-2021.pdf
spellingShingle G. Pintér
K. F. Hohmann
J. T. Grün
J. Wirmer-Bartoschek
C. Glaubitz
B. Fürtig
H. Schwalbe
Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics
Magnetic Resonance
title Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics
title_full Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics
title_fullStr Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics
title_full_unstemmed Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics
title_short Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics
title_sort real time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics
url https://mr.copernicus.org/articles/2/291/2021/mr-2-291-2021.pdf
work_keys_str_mv AT gpinter realtimenuclearmagneticresonancespectroscopyinthestudyofbiomolecularkineticsanddynamics
AT kfhohmann realtimenuclearmagneticresonancespectroscopyinthestudyofbiomolecularkineticsanddynamics
AT jtgrun realtimenuclearmagneticresonancespectroscopyinthestudyofbiomolecularkineticsanddynamics
AT jwirmerbartoschek realtimenuclearmagneticresonancespectroscopyinthestudyofbiomolecularkineticsanddynamics
AT cglaubitz realtimenuclearmagneticresonancespectroscopyinthestudyofbiomolecularkineticsanddynamics
AT bfurtig realtimenuclearmagneticresonancespectroscopyinthestudyofbiomolecularkineticsanddynamics
AT hschwalbe realtimenuclearmagneticresonancespectroscopyinthestudyofbiomolecularkineticsanddynamics