The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO<sub>2</sub>, temperature, water, and nitrogen (version 1.0)

<p>Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from...

Full description

Bibliographic Details
Main Authors: J. A. Franke, C. Müller, J. Elliott, A. C. Ruane, J. Jägermeyr, A. Snyder, M. Dury, P. D. Falloon, C. Folberth, L. François, T. Hank, R. C. Izaurralde, I. Jacquemin, C. Jones, M. Li, W. Liu, S. Olin, M. Phillips, T. A. M. Pugh, A. Reddy, K. Williams, Z. Wang, F. Zabel, E. J. Moyer
Format: Article
Language:English
Published: Copernicus Publications 2020-09-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/13/3995/2020/gmd-13-3995-2020.pdf
_version_ 1818133073025302528
author J. A. Franke
J. A. Franke
C. Müller
J. Elliott
J. Elliott
A. C. Ruane
J. Jägermeyr
J. Jägermeyr
J. Jägermeyr
J. Jägermeyr
A. Snyder
M. Dury
P. D. Falloon
C. Folberth
L. François
T. Hank
R. C. Izaurralde
R. C. Izaurralde
I. Jacquemin
C. Jones
M. Li
M. Li
W. Liu
W. Liu
S. Olin
M. Phillips
M. Phillips
T. A. M. Pugh
T. A. M. Pugh
A. Reddy
K. Williams
K. Williams
Z. Wang
Z. Wang
F. Zabel
E. J. Moyer
E. J. Moyer
author_facet J. A. Franke
J. A. Franke
C. Müller
J. Elliott
J. Elliott
A. C. Ruane
J. Jägermeyr
J. Jägermeyr
J. Jägermeyr
J. Jägermeyr
A. Snyder
M. Dury
P. D. Falloon
C. Folberth
L. François
T. Hank
R. C. Izaurralde
R. C. Izaurralde
I. Jacquemin
C. Jones
M. Li
M. Li
W. Liu
W. Liu
S. Olin
M. Phillips
M. Phillips
T. A. M. Pugh
T. A. M. Pugh
A. Reddy
K. Williams
K. Williams
Z. Wang
Z. Wang
F. Zabel
E. J. Moyer
E. J. Moyer
author_sort J. A. Franke
collection DOAJ
description <p>Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase 2. The GGCMI Phase 2 experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: that growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological-mean yield response of all models with a simple polynomial in mean growing-season values. Climatological-mean yields are a central metric in climate change impact analysis; we show here that they can be captured without relying on interannual variations. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios; errors become significant only in some marginal lands where crops are not currently grown. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase 2 dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts.</p>
first_indexed 2024-12-11T08:46:55Z
format Article
id doaj.art-70c0cb8f17ea40308cbb142473c564ec
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-12-11T08:46:55Z
publishDate 2020-09-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-70c0cb8f17ea40308cbb142473c564ec2022-12-22T01:14:07ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032020-09-01133995401810.5194/gmd-13-3995-2020The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO<sub>2</sub>, temperature, water, and nitrogen (version 1.0)J. A. Franke0J. A. Franke1C. Müller2J. Elliott3J. Elliott4A. C. Ruane5J. Jägermeyr6J. Jägermeyr7J. Jägermeyr8J. Jägermeyr9A. Snyder10M. Dury11P. D. Falloon12C. Folberth13L. François14T. Hank15R. C. Izaurralde16R. C. Izaurralde17I. Jacquemin18C. Jones19M. Li20M. Li21W. Liu22W. Liu23S. Olin24M. Phillips25M. Phillips26T. A. M. Pugh27T. A. M. Pugh28A. Reddy29K. Williams30K. Williams31Z. Wang32Z. Wang33F. Zabel34E. J. Moyer35E. J. Moyer36Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USACenter for Robust Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USAPotsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, GermanyCenter for Robust Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USANASA Goddard Institute for Space Studies, New York, NY, USACenter for Climate Systems Research, Columbia University, New York, NY 10025, USACenter for Robust Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USAPotsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, GermanyNASA Goddard Institute for Space Studies, New York, NY, USACenter for Climate Systems Research, Columbia University, New York, NY 10025, USAJoint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USAUnité de Modélisation du Climat et des Cycles Biogéochimiques, UR SPHERES, Institut d'Astrophysique et de Géophysique, University of Liège, Liège, BelgiumMet Office Hadley Centre, Exeter, UKEcosystem Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, AustriaUnité de Modélisation du Climat et des Cycles Biogéochimiques, UR SPHERES, Institut d'Astrophysique et de Géophysique, University of Liège, Liège, BelgiumDepartment of Geography, Ludwig-Maximilians-Universität München, Munich, GermanyDepartment of Geographical Sciences, University of Maryland, College Park, MD, USATexas Agrilife Research and Extension, Texas A&M University, Temple, TX, USAUnité de Modélisation du Climat et des Cycles Biogéochimiques, UR SPHERES, Institut d'Astrophysique et de Géophysique, University of Liège, Liège, BelgiumDepartment of Geographical Sciences, University of Maryland, College Park, MD, USACenter for Robust Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USADepartment of Statistics, University of Chicago, Chicago, IL, USAEAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, SwitzerlandLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, FranceDepartment of Physical Geography and Ecosystem Science, Lund University, Lund, SwedenNASA Goddard Institute for Space Studies, New York, NY, USAEarth Institute Center for Climate Systems Research, Columbia University, New York, NY, USASchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UKBirmingham Institute of Forest Research, University of Birmingham, Birmingham, UKDepartment of Geographical Sciences, University of Maryland, College Park, MD, USAMet Office Hadley Centre, Exeter, UKGlobal Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter, UKDepartment of the Geophysical Sciences, University of Chicago, Chicago, IL, USACenter for Robust Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USADepartment of Geography, Ludwig-Maximilians-Universität München, Munich, GermanyDepartment of the Geophysical Sciences, University of Chicago, Chicago, IL, USACenter for Robust Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA<p>Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase 2. The GGCMI Phase 2 experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: that growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological-mean yield response of all models with a simple polynomial in mean growing-season values. Climatological-mean yields are a central metric in climate change impact analysis; we show here that they can be captured without relying on interannual variations. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios; errors become significant only in some marginal lands where crops are not currently grown. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase 2 dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts.</p>https://gmd.copernicus.org/articles/13/3995/2020/gmd-13-3995-2020.pdf
spellingShingle J. A. Franke
J. A. Franke
C. Müller
J. Elliott
J. Elliott
A. C. Ruane
J. Jägermeyr
J. Jägermeyr
J. Jägermeyr
J. Jägermeyr
A. Snyder
M. Dury
P. D. Falloon
C. Folberth
L. François
T. Hank
R. C. Izaurralde
R. C. Izaurralde
I. Jacquemin
C. Jones
M. Li
M. Li
W. Liu
W. Liu
S. Olin
M. Phillips
M. Phillips
T. A. M. Pugh
T. A. M. Pugh
A. Reddy
K. Williams
K. Williams
Z. Wang
Z. Wang
F. Zabel
E. J. Moyer
E. J. Moyer
The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO<sub>2</sub>, temperature, water, and nitrogen (version 1.0)
Geoscientific Model Development
title The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO<sub>2</sub>, temperature, water, and nitrogen (version 1.0)
title_full The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO<sub>2</sub>, temperature, water, and nitrogen (version 1.0)
title_fullStr The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO<sub>2</sub>, temperature, water, and nitrogen (version 1.0)
title_full_unstemmed The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO<sub>2</sub>, temperature, water, and nitrogen (version 1.0)
title_short The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO<sub>2</sub>, temperature, water, and nitrogen (version 1.0)
title_sort ggcmi phase 2 emulators global gridded crop model responses to changes in co sub 2 sub temperature water and nitrogen version 1 0
url https://gmd.copernicus.org/articles/13/3995/2020/gmd-13-3995-2020.pdf
work_keys_str_mv AT jafranke theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jafranke theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT cmuller theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jelliott theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jelliott theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT acruane theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jjagermeyr theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jjagermeyr theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jjagermeyr theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jjagermeyr theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT asnyder theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mdury theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT pdfalloon theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT cfolberth theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT lfrancois theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT thank theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT rcizaurralde theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT rcizaurralde theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT ijacquemin theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT cjones theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mli theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mli theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT wliu theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT wliu theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT solin theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mphillips theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mphillips theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT tampugh theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT tampugh theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT areddy theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT kwilliams theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT kwilliams theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT zwang theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT zwang theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT fzabel theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT ejmoyer theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT ejmoyer theggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jafranke ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jafranke ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT cmuller ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jelliott ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jelliott ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT acruane ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jjagermeyr ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jjagermeyr ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jjagermeyr ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT jjagermeyr ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT asnyder ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mdury ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT pdfalloon ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT cfolberth ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT lfrancois ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT thank ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT rcizaurralde ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT rcizaurralde ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT ijacquemin ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT cjones ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mli ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mli ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT wliu ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT wliu ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT solin ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mphillips ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT mphillips ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT tampugh ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT tampugh ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT areddy ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT kwilliams ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT kwilliams ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT zwang ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT zwang ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT fzabel ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT ejmoyer ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10
AT ejmoyer ggcmiphase2emulatorsglobalgriddedcropmodelresponsestochangesincosub2subtemperaturewaterandnitrogenversion10