Diffusion mechanism in the sodium-ion battery material sodium cobaltate
Abstract High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteri...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2018-02-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-018-21354-5 |
_version_ | 1830414428140470272 |
---|---|
author | T. J. Willis D. G. Porter D. J. Voneshen S. Uthayakumar F. Demmel M. J. Gutmann M. Roger K. Refson J. P. Goff |
author_facet | T. J. Willis D. G. Porter D. J. Voneshen S. Uthayakumar F. Demmel M. J. Gutmann M. Roger K. Refson J. P. Goff |
author_sort | T. J. Willis |
collection | DOAJ |
description | Abstract High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO2. Here we have determined the diffusion mechanism for Na0.8CoO2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials. |
first_indexed | 2024-12-20T20:43:24Z |
format | Article |
id | doaj.art-70e5197bca414449acff7ed144a9b660 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-12-20T20:43:24Z |
publishDate | 2018-02-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-70e5197bca414449acff7ed144a9b6602022-12-21T19:27:05ZengNature PortfolioScientific Reports2045-23222018-02-018111010.1038/s41598-018-21354-5Diffusion mechanism in the sodium-ion battery material sodium cobaltateT. J. Willis0D. G. Porter1D. J. Voneshen2S. Uthayakumar3F. Demmel4M. J. Gutmann5M. Roger6K. Refson7J. P. Goff8Department of Physics, Royal Holloway, University of LondonDiamond Light Source, Harwell Science and Innovation CampusISIS Facility, Rutherford Appleton Laboratory, ChiltonDepartment of Physics, Royal Holloway, University of LondonISIS Facility, Rutherford Appleton Laboratory, ChiltonISIS Facility, Rutherford Appleton Laboratory, ChiltonService de Physique de l’Etat Condensé, (CNRS/MIPPU/URA 2464), DSM/DRECAM/SPEC, CEA Saclay, P.C. 135Department of Physics, Royal Holloway, University of LondonDepartment of Physics, Royal Holloway, University of LondonAbstract High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO2. Here we have determined the diffusion mechanism for Na0.8CoO2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.https://doi.org/10.1038/s41598-018-21354-5 |
spellingShingle | T. J. Willis D. G. Porter D. J. Voneshen S. Uthayakumar F. Demmel M. J. Gutmann M. Roger K. Refson J. P. Goff Diffusion mechanism in the sodium-ion battery material sodium cobaltate Scientific Reports |
title | Diffusion mechanism in the sodium-ion battery material sodium cobaltate |
title_full | Diffusion mechanism in the sodium-ion battery material sodium cobaltate |
title_fullStr | Diffusion mechanism in the sodium-ion battery material sodium cobaltate |
title_full_unstemmed | Diffusion mechanism in the sodium-ion battery material sodium cobaltate |
title_short | Diffusion mechanism in the sodium-ion battery material sodium cobaltate |
title_sort | diffusion mechanism in the sodium ion battery material sodium cobaltate |
url | https://doi.org/10.1038/s41598-018-21354-5 |
work_keys_str_mv | AT tjwillis diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate AT dgporter diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate AT djvoneshen diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate AT suthayakumar diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate AT fdemmel diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate AT mjgutmann diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate AT mroger diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate AT krefson diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate AT jpgoff diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate |