Diffusion mechanism in the sodium-ion battery material sodium cobaltate

Abstract High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteri...

Full description

Bibliographic Details
Main Authors: T. J. Willis, D. G. Porter, D. J. Voneshen, S. Uthayakumar, F. Demmel, M. J. Gutmann, M. Roger, K. Refson, J. P. Goff
Format: Article
Language:English
Published: Nature Portfolio 2018-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-018-21354-5
_version_ 1830414428140470272
author T. J. Willis
D. G. Porter
D. J. Voneshen
S. Uthayakumar
F. Demmel
M. J. Gutmann
M. Roger
K. Refson
J. P. Goff
author_facet T. J. Willis
D. G. Porter
D. J. Voneshen
S. Uthayakumar
F. Demmel
M. J. Gutmann
M. Roger
K. Refson
J. P. Goff
author_sort T. J. Willis
collection DOAJ
description Abstract High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO2. Here we have determined the diffusion mechanism for Na0.8CoO2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.
first_indexed 2024-12-20T20:43:24Z
format Article
id doaj.art-70e5197bca414449acff7ed144a9b660
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-12-20T20:43:24Z
publishDate 2018-02-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-70e5197bca414449acff7ed144a9b6602022-12-21T19:27:05ZengNature PortfolioScientific Reports2045-23222018-02-018111010.1038/s41598-018-21354-5Diffusion mechanism in the sodium-ion battery material sodium cobaltateT. J. Willis0D. G. Porter1D. J. Voneshen2S. Uthayakumar3F. Demmel4M. J. Gutmann5M. Roger6K. Refson7J. P. Goff8Department of Physics, Royal Holloway, University of LondonDiamond Light Source, Harwell Science and Innovation CampusISIS Facility, Rutherford Appleton Laboratory, ChiltonDepartment of Physics, Royal Holloway, University of LondonISIS Facility, Rutherford Appleton Laboratory, ChiltonISIS Facility, Rutherford Appleton Laboratory, ChiltonService de Physique de l’Etat Condensé, (CNRS/MIPPU/URA 2464), DSM/DRECAM/SPEC, CEA Saclay, P.C. 135Department of Physics, Royal Holloway, University of LondonDepartment of Physics, Royal Holloway, University of LondonAbstract High performance batteries based on the movement of Li ions in Li x CoO2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO2. Here we have determined the diffusion mechanism for Na0.8CoO2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.https://doi.org/10.1038/s41598-018-21354-5
spellingShingle T. J. Willis
D. G. Porter
D. J. Voneshen
S. Uthayakumar
F. Demmel
M. J. Gutmann
M. Roger
K. Refson
J. P. Goff
Diffusion mechanism in the sodium-ion battery material sodium cobaltate
Scientific Reports
title Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_full Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_fullStr Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_full_unstemmed Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_short Diffusion mechanism in the sodium-ion battery material sodium cobaltate
title_sort diffusion mechanism in the sodium ion battery material sodium cobaltate
url https://doi.org/10.1038/s41598-018-21354-5
work_keys_str_mv AT tjwillis diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT dgporter diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT djvoneshen diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT suthayakumar diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT fdemmel diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT mjgutmann diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT mroger diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT krefson diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate
AT jpgoff diffusionmechanisminthesodiumionbatterymaterialsodiumcobaltate