Tribological Performance and Thermal Stability of Nanorubber-Modified Polybenzoxazine Composites for Non-Asbestos Friction Materials

Asbestos-free friction composite based on ultrafine full-vulcanized acrylonitrile butadiene rubber particles (UFNBRPs)-modified polybenzoxazine was successfully developed. The UFNBRPs-modified polybenzoxazine friction composite was characterized for chemical, tribological, and mechanical properties...

Full description

Bibliographic Details
Main Authors: Chanchira Jubsilp, Jakkrit Jantaramaha, Phattarin Mora, Sarawut Rimdusit
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/15/2435
Description
Summary:Asbestos-free friction composite based on ultrafine full-vulcanized acrylonitrile butadiene rubber particles (UFNBRPs)-modified polybenzoxazine was successfully developed. The UFNBRPs-modified polybenzoxazine friction composite was characterized for chemical, tribological, and mechanical properties as well as thermal stability. The UFNBRPs not only act as a filler to reduce noise in the friction composites due to their suitable viscoelastic behaviors but also play a key role in friction modifiers to enhance friction coefficient and wear resistance in the polybenzoxazine composites. The chemical bonding formation between UFNBRPs and polybenzoxazine can significantly improve friction, mechanical, and thermal properties of the friction composite. The outstanding tribological performance of the friction composite under 100–350 °C, i.e., friction coefficients and wear rates in a range of 0.36–0.43 and 0.13 × 10<sup>−4</sup>–0.29 × 10<sup>−4</sup> mm<sup>3</sup>/Nm, respectively, was achieved. The high flexural strength and modulus of the friction composite, i.e., 61 MPa and 6.4 GPa, respectively, were obtained. The friction composite also showed high thermal stability, such as 410 °C for degradation temperature and 215 °C for glass transition temperature. The results indicated that the obtained UFNBRPs-modified polybenzoxazine friction composite meets the industrial standard of brake linings and pads for automobiles; therefore, the UFNBRPs-modified polybenzoxazine friction composite can effectively be used as a replacement for asbestos-based friction materials.
ISSN:2073-4360