Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator
While poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) film is an excellent piezoelectric material for mechanical energy harvesting, the piezoelectric output varies considerably with the spin coating conditions. Herein, we reported a systematic evaluation of the structural, electrical, mech...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/16/4/1892 |
_version_ | 1797621230421934080 |
---|---|
author | Dong Geun Jeong Huidrom Hemojit Singh Mi Suk Kim Jong Hoon Jung |
author_facet | Dong Geun Jeong Huidrom Hemojit Singh Mi Suk Kim Jong Hoon Jung |
author_sort | Dong Geun Jeong |
collection | DOAJ |
description | While poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) film is an excellent piezoelectric material for mechanical energy harvesting, the piezoelectric output varies considerably with the spin coating conditions. Herein, we reported a systematic evaluation of the structural, electrical, mechanical, and microstructural properties of spin-coated P(VDF-TrFE) films obtained at various distances from the center, as well as under different rotational speeds. With increasing distance, the remnant polarization, dielectric constant, and crystallinity of the films increased, which resulted in enhanced piezoelectric power at the largest distance. With increasing rotational speed, the remnant polarization, dielectric constant, and crystallinity of the films initially increased and then decreased, while the Young’s modulus continuously increased. This resulted in an enhanced piezoelectric power at a given rotational speed. The piezoelectric power is proportional to the remnant polarization and inversely proportional to the Young’s modulus. The highest (2.1 mW) and lowest (0.5 mW) instantaneous powers were obtained at the largest (1.09 μC/cm<sup>2</sup>·GPa<sup>−1</sup>) and smallest (0.60 μC/cm<sup>2</sup>·GPa<sup>−1</sup>) value of remnant polarization over Young’s modulus, respectively. We explain these behaviors in terms of the centrifugal force-induced shear stress and grain alignment, as well as the thickness-dependent β-phase crystallization and confinement. This work implies that the spin coating conditions of distance and rotational speed should be optimized for the enhanced power output of spin-coated P(VDF-TrFE)-based piezoelectric nanogenerators. |
first_indexed | 2024-03-11T08:52:52Z |
format | Article |
id | doaj.art-70ef336c09f34e859ce1f650d4f39dda |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-11T08:52:52Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-70ef336c09f34e859ce1f650d4f39dda2023-11-16T20:19:15ZengMDPI AGEnergies1996-10732023-02-01164189210.3390/en16041892Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric NanogeneratorDong Geun Jeong0Huidrom Hemojit Singh1Mi Suk Kim2Jong Hoon Jung3Department of Physics, Inha University, Incheon 22212, Republic of KoreaDepartment of Physics, Inha University, Incheon 22212, Republic of KoreaDepartment of Physics, Inha University, Incheon 22212, Republic of KoreaDepartment of Physics, Inha University, Incheon 22212, Republic of KoreaWhile poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) film is an excellent piezoelectric material for mechanical energy harvesting, the piezoelectric output varies considerably with the spin coating conditions. Herein, we reported a systematic evaluation of the structural, electrical, mechanical, and microstructural properties of spin-coated P(VDF-TrFE) films obtained at various distances from the center, as well as under different rotational speeds. With increasing distance, the remnant polarization, dielectric constant, and crystallinity of the films increased, which resulted in enhanced piezoelectric power at the largest distance. With increasing rotational speed, the remnant polarization, dielectric constant, and crystallinity of the films initially increased and then decreased, while the Young’s modulus continuously increased. This resulted in an enhanced piezoelectric power at a given rotational speed. The piezoelectric power is proportional to the remnant polarization and inversely proportional to the Young’s modulus. The highest (2.1 mW) and lowest (0.5 mW) instantaneous powers were obtained at the largest (1.09 μC/cm<sup>2</sup>·GPa<sup>−1</sup>) and smallest (0.60 μC/cm<sup>2</sup>·GPa<sup>−1</sup>) value of remnant polarization over Young’s modulus, respectively. We explain these behaviors in terms of the centrifugal force-induced shear stress and grain alignment, as well as the thickness-dependent β-phase crystallization and confinement. This work implies that the spin coating conditions of distance and rotational speed should be optimized for the enhanced power output of spin-coated P(VDF-TrFE)-based piezoelectric nanogenerators.https://www.mdpi.com/1996-1073/16/4/1892spin-coated P(VDF-TrFE)shear stressgrain alignmentcrystallizationconfinementpower output |
spellingShingle | Dong Geun Jeong Huidrom Hemojit Singh Mi Suk Kim Jong Hoon Jung Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator Energies spin-coated P(VDF-TrFE) shear stress grain alignment crystallization confinement power output |
title | Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator |
title_full | Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator |
title_fullStr | Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator |
title_full_unstemmed | Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator |
title_short | Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator |
title_sort | effect of centrifugal force on power output of a spin coated poly vinylidene fluoride trifluoroethylene based piezoelectric nanogenerator |
topic | spin-coated P(VDF-TrFE) shear stress grain alignment crystallization confinement power output |
url | https://www.mdpi.com/1996-1073/16/4/1892 |
work_keys_str_mv | AT donggeunjeong effectofcentrifugalforceonpoweroutputofaspincoatedpolyvinylidenefluoridetrifluoroethylenebasedpiezoelectricnanogenerator AT huidromhemojitsingh effectofcentrifugalforceonpoweroutputofaspincoatedpolyvinylidenefluoridetrifluoroethylenebasedpiezoelectricnanogenerator AT misukkim effectofcentrifugalforceonpoweroutputofaspincoatedpolyvinylidenefluoridetrifluoroethylenebasedpiezoelectricnanogenerator AT jonghoonjung effectofcentrifugalforceonpoweroutputofaspincoatedpolyvinylidenefluoridetrifluoroethylenebasedpiezoelectricnanogenerator |