Summary: | Wood drying stress causes various drying defects, which result from the wood microstructure and the transfer of heat and mass during the drying. It is the fundamental way to solve the problem of defects to clarify the law and mechanism of wood stress and strain development during drying. In this paper, based on the defects of wood drying, the theory and experimental testing methods of drying stress and strain were summarized. Meanwhile, artificial neural networks (ANN) and their application in the wood drying field were also investigated. The traditional prong and slicing methods were used practically in the research and industry of wood drying, but the stress changes in-process cannot be trapped. The technologies of image analysis and near-infrared spectroscopy provide a new opportunity for the detection of drying stress and strain. Hence, future interest should be attached to the combination of the theory of heat and mass transfer and their coupling during drying with the theory of microscopic cell wall mechanics and macroscopic drying. A more complete image acquisition and analysis system should be developed to realize the real-time monitoring of drying strain and cracking, practically. A more feasible and reasonable prediction model of wood drying stress and strain should be established to achieve the accuracy of the prediction.
|