ALP inflation and Big Bang on Earth

Abstract We study a hilltop inflation model where an axion-like particle (ALP) plays the role of the inflaton. We find that, for a broad class of potentials, the decay constant and the mass at the potential minimum satisfy the relation, m ϕ  ∼ 10− 6 f, to explain the CMB normalization. The ALP is ne...

Full description

Bibliographic Details
Main Authors: Fuminobu Takahashi, Wen Yin
Format: Article
Language:English
Published: SpringerOpen 2019-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP07(2019)095
Description
Summary:Abstract We study a hilltop inflation model where an axion-like particle (ALP) plays the role of the inflaton. We find that, for a broad class of potentials, the decay constant and the mass at the potential minimum satisfy the relation, m ϕ  ∼ 10− 6 f, to explain the CMB normalization. The ALP is necessarily coupled to the standard model particles for successful reheating. The ALP with the above relation can be searched at beam dump experiments, e.g., the SHiP experiment, if the inflation scale is sufficiently low. In this case, the ALP decays through the interactions that led to the reheating of the Universe. In other words, the Big Bang may be probed at ground-based experiments.
ISSN:1029-8479