On positive periodic solutions of second order singular equations

Abstract Using the fixed point theorem, we study the existence and multiplicity of positive periodic solutions for the second order differential equations {x¨+a(t)x=f(x),x(0)=x(T),x˙(0)=x˙(T). $$\begin{aligned} \textstyle\begin{cases} \ddot{x}+a(t) x=f(x),\\ x(0)=x(T),\qquad \dot{x}(0)=\dot{x}(T). \...

Full description

Bibliographic Details
Main Authors: Yunhai Wang, Yuanfang Ru
Format: Article
Language:English
Published: SpringerOpen 2018-07-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-018-1036-5
Description
Summary:Abstract Using the fixed point theorem, we study the existence and multiplicity of positive periodic solutions for the second order differential equations {x¨+a(t)x=f(x),x(0)=x(T),x˙(0)=x˙(T). $$\begin{aligned} \textstyle\begin{cases} \ddot{x}+a(t) x=f(x),\\ x(0)=x(T),\qquad \dot{x}(0)=\dot{x}(T). \end{cases}\displaystyle \end{aligned}$$ For given nonnegative constants 0<β1<β2<⋯<βN $0<\beta_{1}<\beta_{2}<\cdots<\beta_{N}$, the function f may be singular at x=βi $x=\beta_{i}$.
ISSN:1687-2770