On positive periodic solutions of second order singular equations

Abstract Using the fixed point theorem, we study the existence and multiplicity of positive periodic solutions for the second order differential equations {x¨+a(t)x=f(x),x(0)=x(T),x˙(0)=x˙(T). $$\begin{aligned} \textstyle\begin{cases} \ddot{x}+a(t) x=f(x),\\ x(0)=x(T),\qquad \dot{x}(0)=\dot{x}(T). \...

Full description

Bibliographic Details
Main Authors: Yunhai Wang, Yuanfang Ru
Format: Article
Language:English
Published: SpringerOpen 2018-07-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-018-1036-5
_version_ 1811221274155810816
author Yunhai Wang
Yuanfang Ru
author_facet Yunhai Wang
Yuanfang Ru
author_sort Yunhai Wang
collection DOAJ
description Abstract Using the fixed point theorem, we study the existence and multiplicity of positive periodic solutions for the second order differential equations {x¨+a(t)x=f(x),x(0)=x(T),x˙(0)=x˙(T). $$\begin{aligned} \textstyle\begin{cases} \ddot{x}+a(t) x=f(x),\\ x(0)=x(T),\qquad \dot{x}(0)=\dot{x}(T). \end{cases}\displaystyle \end{aligned}$$ For given nonnegative constants 0<β1<β2<⋯<βN $0<\beta_{1}<\beta_{2}<\cdots<\beta_{N}$, the function f may be singular at x=βi $x=\beta_{i}$.
first_indexed 2024-04-12T07:56:30Z
format Article
id doaj.art-712554c28e184669860ee6189fa920ad
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-04-12T07:56:30Z
publishDate 2018-07-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-712554c28e184669860ee6189fa920ad2022-12-22T03:41:27ZengSpringerOpenBoundary Value Problems1687-27702018-07-012018111010.1186/s13661-018-1036-5On positive periodic solutions of second order singular equationsYunhai Wang0Yuanfang Ru1School of Mechanical Engineering, Guizhou Institute of TechnologyCollege of Science, China pharmaceutical UniversityAbstract Using the fixed point theorem, we study the existence and multiplicity of positive periodic solutions for the second order differential equations {x¨+a(t)x=f(x),x(0)=x(T),x˙(0)=x˙(T). $$\begin{aligned} \textstyle\begin{cases} \ddot{x}+a(t) x=f(x),\\ x(0)=x(T),\qquad \dot{x}(0)=\dot{x}(T). \end{cases}\displaystyle \end{aligned}$$ For given nonnegative constants 0<β1<β2<⋯<βN $0<\beta_{1}<\beta_{2}<\cdots<\beta_{N}$, the function f may be singular at x=βi $x=\beta_{i}$.http://link.springer.com/article/10.1186/s13661-018-1036-5Periodic solutionsSecond order differential equationsSingularFixed point theorem
spellingShingle Yunhai Wang
Yuanfang Ru
On positive periodic solutions of second order singular equations
Boundary Value Problems
Periodic solutions
Second order differential equations
Singular
Fixed point theorem
title On positive periodic solutions of second order singular equations
title_full On positive periodic solutions of second order singular equations
title_fullStr On positive periodic solutions of second order singular equations
title_full_unstemmed On positive periodic solutions of second order singular equations
title_short On positive periodic solutions of second order singular equations
title_sort on positive periodic solutions of second order singular equations
topic Periodic solutions
Second order differential equations
Singular
Fixed point theorem
url http://link.springer.com/article/10.1186/s13661-018-1036-5
work_keys_str_mv AT yunhaiwang onpositiveperiodicsolutionsofsecondordersingularequations
AT yuanfangru onpositiveperiodicsolutionsofsecondordersingularequations