AUTOMATIC EEG CLASSIFICATION USING DENSITY BASED ALGORITHMS DBSCAN AND DENCLUE

Electroencephalograph (EEG) is a commonly used method in neurological practice. Automatic classifiers (algorithms) highlight signal sections with interesting activity and assist an expert with record scoring. Algorithm K-means is one of the most commonly used methods for EEG inspection. In this pape...

Full description

Bibliographic Details
Main Authors: Marek Piorecký, Jan Štrobl, Vladimír Krajča
Format: Article
Language:English
Published: CTU Central Library 2019-11-01
Series:Acta Polytechnica
Subjects:
Online Access:https://ojs.cvut.cz/ojs/index.php/ap/article/view/5377
Description
Summary:Electroencephalograph (EEG) is a commonly used method in neurological practice. Automatic classifiers (algorithms) highlight signal sections with interesting activity and assist an expert with record scoring. Algorithm K-means is one of the most commonly used methods for EEG inspection. In this paper, we propose/apply a method based on density-oriented algorithms DBSCAN and DENCLUE. DBSCAN and DENCLUE separate the nested clusters against K-means. All three algorithms were validated on a testing dataset and after that adapted for a real EEG records classification. 24 dimensions EEG feature space were classified into 5 classes (physiological, epileptic, EOG, electrode, and EMG artefact). Modified DBSCAN and DENCLUE create more than two homogeneous classes of the epileptic EEG data. The results offer an opportunity for the EEG scoring in clinical practice. The big advantage of the proposed algorithms is the high homogeneity of the epileptic class.
ISSN:1210-2709
1805-2363