A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples

The present study reports the development and application of a novel, sensitive, and selective voltammetric sensor for the quantitation of folate or vitamin B<sub>9</sub> in foodstuffs. The sensor was made from magnetic molecularly imprinted polymers (MMIPs), which were synthesized by th...

Full description

Bibliographic Details
Main Authors: Sabir Khan, Ademar Wong, Michael Rychlik, María del Pilar Taboada Sotomayor
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Chemosensors
Subjects:
Online Access:https://www.mdpi.com/2227-9040/10/11/473
Description
Summary:The present study reports the development and application of a novel, sensitive, and selective voltammetric sensor for the quantitation of folate or vitamin B<sub>9</sub> in foodstuffs. The sensor was made from magnetic molecularly imprinted polymers (MMIPs), which were synthesized by the core–shell method using magnetite nanoparticles obtained by the polyol method. The MMIP-based sensor was used for the selective and specific detection of folate in different food samples. The MMIP material was constructed using magnetic water-dispersible nanomaterial, which was prepared by immersing iron (III) acetylacetonate in tri-ethylene-glycol (TEG) solvent. The magnetic water-dispersible nanomaterial was then subjected to polymerization using allyl alcohol as a functional monomer, ethylene-glycol-dimethacrylate (EGDMA) as a cross-linking agent, and 2,2-Azobisisobutyronitrile (AIBN) as a radical initiator. The proposed magnetic materials were characterized by Brunauer–Emmett–Teller (BET), field emission gun scanning electron microscopy (FEG-SEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analysis. The quantification of folate was performed by square wave voltammetry under optimized conditions using 15 mg of MMIPs and 85 mg of carbon paste. The modified electrode presented a linear dynamic range (LDR) of 2.0–12 µmol L<sup>−1</sup> and a limit of detection (LOD) of 1.0 × 10<sup>−7</sup> mol L<sup>−1</sup> in 0.1 mol L<sup>−1</sup> acetate buffer solution (pH 4.0). The proposed sensor was successfully applied for folate detection in different food samples, where recovery percentages ranging from 93 to 103% were obtained. Finally, the results obtained from the analysis of selectivity showed that the modified biomimetic sensor is highly efficient for folate determination in real food samples. Adsorption tests were used to evaluate and compare the efficiency of the MMIPs and magnetic non-molecularly imprinted polymer (MNIPs)—used as control material, through the application of HPLC as a standard method.
ISSN:2227-9040