C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor

Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a po...

Full description

Bibliographic Details
Main Authors: Alan Tran, Angelina Tang, Colleen T O'Loughlin, Anthony Balistreri, Eric Chang, Doris Coto Villa, Joy Li, Aruna Varshney, Vanessa Jimenez, Jacqueline Pyle, Bryan Tsujimoto, Christopher Wellbrook, Christopher Vargas, Alex Duong, Nebat Ali, Sarah Y Matthews, Samantha Levinson, Sarah Woldemariam, Sami Khuri, Martina Bremer, Daryl K Eggers, Noelle L'Etoile, Laura C Miller Conrad, Miri K VanHoven
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2017-09-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/23770
_version_ 1818019830967566336
author Alan Tran
Angelina Tang
Colleen T O'Loughlin
Anthony Balistreri
Eric Chang
Doris Coto Villa
Joy Li
Aruna Varshney
Vanessa Jimenez
Jacqueline Pyle
Bryan Tsujimoto
Christopher Wellbrook
Christopher Vargas
Alex Duong
Nebat Ali
Sarah Y Matthews
Samantha Levinson
Sarah Woldemariam
Sami Khuri
Martina Bremer
Daryl K Eggers
Noelle L'Etoile
Laura C Miller Conrad
Miri K VanHoven
author_facet Alan Tran
Angelina Tang
Colleen T O'Loughlin
Anthony Balistreri
Eric Chang
Doris Coto Villa
Joy Li
Aruna Varshney
Vanessa Jimenez
Jacqueline Pyle
Bryan Tsujimoto
Christopher Wellbrook
Christopher Vargas
Alex Duong
Nebat Ali
Sarah Y Matthews
Samantha Levinson
Sarah Woldemariam
Sami Khuri
Martina Bremer
Daryl K Eggers
Noelle L'Etoile
Laura C Miller Conrad
Miri K VanHoven
author_sort Alan Tran
collection DOAJ
description Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, which is sensed by SRB-6. This behavioral adaptation represents an important strategy for the nematode, which utilizes specialized sensory organs and a chemoreceptor that is tuned to recognize the bacteria. These findings provide a window into the molecules and organs used in the coevolutionary arms race between predator and potential prey.
first_indexed 2024-04-14T07:56:46Z
format Article
id doaj.art-7147cdee9ba441cbb6a350654e6cf939
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-14T07:56:46Z
publishDate 2017-09-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-7147cdee9ba441cbb6a350654e6cf9392022-12-22T02:05:01ZengeLife Sciences Publications LtdeLife2050-084X2017-09-01610.7554/eLife.23770C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptorAlan Tran0Angelina Tang1Colleen T O'Loughlin2Anthony Balistreri3Eric Chang4Doris Coto Villa5Joy Li6Aruna Varshney7Vanessa Jimenez8Jacqueline Pyle9Bryan Tsujimoto10Christopher Wellbrook11Christopher Vargas12Alex Duong13Nebat Ali14Sarah Y Matthews15Samantha Levinson16Sarah Woldemariam17Sami Khuri18Martina Bremer19Daryl K Eggers20Noelle L'Etoile21Laura C Miller Conrad22Miri K VanHoven23https://orcid.org/0000-0001-7714-1555Department of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, United StatesDepartment of Chemistry, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesDepartment of Chemistry, San Jose State University, California, United StatesDepartment of Chemistry, San Jose State University, California, United StatesDepartment of Cell & Tissue Biology, University of California San Francisco, San Francisco, United StatesDepartment of Computer Science, San Jose State University, California, United StatesDepartment of Mathematics and Statistics, San Jose State University, California, United StatesDepartment of Chemistry, San Jose State University, California, United StatesDepartment of Cell & Tissue Biology, University of California San Francisco, San Francisco, United StatesDepartment of Chemistry, San Jose State University, California, United StatesDepartment of Biological Sciences, San Jose State University, California, United StatesPredators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, which is sensed by SRB-6. This behavioral adaptation represents an important strategy for the nematode, which utilizes specialized sensory organs and a chemoreceptor that is tuned to recognize the bacteria. These findings provide a window into the molecules and organs used in the coevolutionary arms race between predator and potential prey.https://elifesciences.org/articles/23770predatorpreyStreptomycessrb-6dodecanoic acidphasmid
spellingShingle Alan Tran
Angelina Tang
Colleen T O'Loughlin
Anthony Balistreri
Eric Chang
Doris Coto Villa
Joy Li
Aruna Varshney
Vanessa Jimenez
Jacqueline Pyle
Bryan Tsujimoto
Christopher Wellbrook
Christopher Vargas
Alex Duong
Nebat Ali
Sarah Y Matthews
Samantha Levinson
Sarah Woldemariam
Sami Khuri
Martina Bremer
Daryl K Eggers
Noelle L'Etoile
Laura C Miller Conrad
Miri K VanHoven
C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor
eLife
predator
prey
Streptomyces
srb-6
dodecanoic acid
phasmid
title C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor
title_full C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor
title_fullStr C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor
title_full_unstemmed C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor
title_short C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor
title_sort c elegans avoids toxin producing streptomyces using a seven transmembrane domain chemosensory receptor
topic predator
prey
Streptomyces
srb-6
dodecanoic acid
phasmid
url https://elifesciences.org/articles/23770
work_keys_str_mv AT alantran celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT angelinatang celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT colleentoloughlin celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT anthonybalistreri celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT ericchang celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT doriscotovilla celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT joyli celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT arunavarshney celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT vanessajimenez celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT jacquelinepyle celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT bryantsujimoto celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT christopherwellbrook celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT christophervargas celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT alexduong celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT nebatali celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT sarahymatthews celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT samanthalevinson celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT sarahwoldemariam celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT samikhuri celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT martinabremer celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT darylkeggers celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT noelleletoile celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT lauracmillerconrad celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor
AT mirikvanhoven celegansavoidstoxinproducingstreptomycesusingaseventransmembranedomainchemosensoryreceptor