Automatic Extraction of New Concepts from Domain-Specific Terms
This paper describes a novel approach for recognition of domain-specific terms that exist in the knowledge base but represent new concepts. Our method can be applied to informal knowledge bases – it requires only semantic similarity between concepts and statistics of terms extracted from the corpus....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Ivannikov Institute for System Programming of the Russian Academy of Sciences
2018-10-01
|
Series: | Труды Института системного программирования РАН |
Subjects: | |
Online Access: | https://ispranproceedings.elpub.ru/jour/article/view/878 |
_version_ | 1811314804132937728 |
---|---|
author | N. A. Astrakhantsev |
author_facet | N. A. Astrakhantsev |
author_sort | N. A. Astrakhantsev |
collection | DOAJ |
description | This paper describes a novel approach for recognition of domain-specific terms that exist in the knowledge base but represent new concepts. Our method can be applied to informal knowledge bases – it requires only semantic similarity between concepts and statistics of terms extracted from the corpus. We show that our method outperforms existing approaches and improves precision of word sense disambiguation algorithm. |
first_indexed | 2024-04-13T11:18:55Z |
format | Article |
id | doaj.art-7148e1c096b341f699188880f394a480 |
institution | Directory Open Access Journal |
issn | 2079-8156 2220-6426 |
language | English |
last_indexed | 2024-04-13T11:18:55Z |
publishDate | 2018-10-01 |
publisher | Ivannikov Institute for System Programming of the Russian Academy of Sciences |
record_format | Article |
series | Труды Института системного программирования РАН |
spelling | doaj.art-7148e1c096b341f699188880f394a4802022-12-22T02:48:53ZengIvannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-01250167178878Automatic Extraction of New Concepts from Domain-Specific TermsN. A. Astrakhantsev0ИСП РАНThis paper describes a novel approach for recognition of domain-specific terms that exist in the knowledge base but represent new concepts. Our method can be applied to informal knowledge bases – it requires only semantic similarity between concepts and statistics of terms extracted from the corpus. We show that our method outperforms existing approaches and improves precision of word sense disambiguation algorithm.https://ispranproceedings.elpub.ru/jour/article/view/878извлечение концептовпредметно-специфичные терминыобогащение баз знанийобогащение онтологийнеформальная база знанийнеформальная онтологияразрешение лексической многозначностисемантический анализ |
spellingShingle | N. A. Astrakhantsev Automatic Extraction of New Concepts from Domain-Specific Terms Труды Института системного программирования РАН извлечение концептов предметно-специфичные термины обогащение баз знаний обогащение онтологий неформальная база знаний неформальная онтология разрешение лексической многозначности семантический анализ |
title | Automatic Extraction of New Concepts from Domain-Specific Terms |
title_full | Automatic Extraction of New Concepts from Domain-Specific Terms |
title_fullStr | Automatic Extraction of New Concepts from Domain-Specific Terms |
title_full_unstemmed | Automatic Extraction of New Concepts from Domain-Specific Terms |
title_short | Automatic Extraction of New Concepts from Domain-Specific Terms |
title_sort | automatic extraction of new concepts from domain specific terms |
topic | извлечение концептов предметно-специфичные термины обогащение баз знаний обогащение онтологий неформальная база знаний неформальная онтология разрешение лексической многозначности семантический анализ |
url | https://ispranproceedings.elpub.ru/jour/article/view/878 |
work_keys_str_mv | AT naastrakhantsev automaticextractionofnewconceptsfromdomainspecificterms |