Automatic Extraction of New Concepts from Domain-Specific Terms

This paper describes a novel approach for recognition of domain-specific terms that exist in the knowledge base but represent new concepts. Our method can be applied to informal knowledge bases – it requires only semantic similarity between concepts and statistics of terms extracted from the corpus....

Full description

Bibliographic Details
Main Author: N. A. Astrakhantsev
Format: Article
Language:English
Published: Ivannikov Institute for System Programming of the Russian Academy of Sciences 2018-10-01
Series:Труды Института системного программирования РАН
Subjects:
Online Access:https://ispranproceedings.elpub.ru/jour/article/view/878
_version_ 1811314804132937728
author N. A. Astrakhantsev
author_facet N. A. Astrakhantsev
author_sort N. A. Astrakhantsev
collection DOAJ
description This paper describes a novel approach for recognition of domain-specific terms that exist in the knowledge base but represent new concepts. Our method can be applied to informal knowledge bases – it requires only semantic similarity between concepts and statistics of terms extracted from the corpus. We show that our method outperforms existing approaches and improves precision of word sense disambiguation algorithm.
first_indexed 2024-04-13T11:18:55Z
format Article
id doaj.art-7148e1c096b341f699188880f394a480
institution Directory Open Access Journal
issn 2079-8156
2220-6426
language English
last_indexed 2024-04-13T11:18:55Z
publishDate 2018-10-01
publisher Ivannikov Institute for System Programming of the Russian Academy of Sciences
record_format Article
series Труды Института системного программирования РАН
spelling doaj.art-7148e1c096b341f699188880f394a4802022-12-22T02:48:53ZengIvannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-01250167178878Automatic Extraction of New Concepts from Domain-Specific TermsN. A. Astrakhantsev0ИСП РАНThis paper describes a novel approach for recognition of domain-specific terms that exist in the knowledge base but represent new concepts. Our method can be applied to informal knowledge bases – it requires only semantic similarity between concepts and statistics of terms extracted from the corpus. We show that our method outperforms existing approaches and improves precision of word sense disambiguation algorithm.https://ispranproceedings.elpub.ru/jour/article/view/878извлечение концептовпредметно-специфичные терминыобогащение баз знанийобогащение онтологийнеформальная база знанийнеформальная онтологияразрешение лексической многозначностисемантический анализ
spellingShingle N. A. Astrakhantsev
Automatic Extraction of New Concepts from Domain-Specific Terms
Труды Института системного программирования РАН
извлечение концептов
предметно-специфичные термины
обогащение баз знаний
обогащение онтологий
неформальная база знаний
неформальная онтология
разрешение лексической многозначности
семантический анализ
title Automatic Extraction of New Concepts from Domain-Specific Terms
title_full Automatic Extraction of New Concepts from Domain-Specific Terms
title_fullStr Automatic Extraction of New Concepts from Domain-Specific Terms
title_full_unstemmed Automatic Extraction of New Concepts from Domain-Specific Terms
title_short Automatic Extraction of New Concepts from Domain-Specific Terms
title_sort automatic extraction of new concepts from domain specific terms
topic извлечение концептов
предметно-специфичные термины
обогащение баз знаний
обогащение онтологий
неформальная база знаний
неформальная онтология
разрешение лексической многозначности
семантический анализ
url https://ispranproceedings.elpub.ru/jour/article/view/878
work_keys_str_mv AT naastrakhantsev automaticextractionofnewconceptsfromdomainspecificterms