Physiological Signal-Based Real-Time Emotion Recognition Based on Exploiting Mutual Information with Physiologically Common Features

This paper proposes a real-time emotion recognition system that utilizes photoplethysmography (PPG) and electromyography (EMG) physiological signals. The proposed approach employs a complex-valued neural network to extract common features from the physiological signals, enabling successful emotion r...

Full description

Bibliographic Details
Main Authors: Ean-Gyu Han, Tae-Koo Kang, Myo-Taeg Lim
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/13/2933
Description
Summary:This paper proposes a real-time emotion recognition system that utilizes photoplethysmography (PPG) and electromyography (EMG) physiological signals. The proposed approach employs a complex-valued neural network to extract common features from the physiological signals, enabling successful emotion recognition without interference. The system comprises three stages: single-pulse extraction, a physiological coherence feature module, and a physiological common feature module. The experimental results demonstrate that the proposed method surpasses alternative approaches in terms of accuracy and the recognition interval. By extracting common features of the PPG and EMG signals, this approach achieves effective emotion recognition without mutual interference. The findings provide a significant advancement in real-time emotion analysis and offer a clear and concise framework for understanding individuals’ emotional states using physiological signals.
ISSN:2079-9292