An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE‐II Forcing
Abstract The Energy Exascale Earth System Model (E3SM) is a new coupled Earth system model sponsored by the U.S Department of Energy. Here we present E3SM global simulations using active ocean and sea ice that are driven by the Coordinated Ocean‐ice Reference Experiments II (CORE‐II) interannual atm...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Geophysical Union (AGU)
2019-05-01
|
Series: | Journal of Advances in Modeling Earth Systems |
Subjects: | |
Online Access: | https://doi.org/10.1029/2018MS001373 |
_version_ | 1819049943083515904 |
---|---|
author | Mark R. Petersen Xylar S. Asay‐Davis Anne S. Berres Qingshan Chen Nils Feige Matthew J. Hoffman Douglas W. Jacobsen Philip W. Jones Mathew E. Maltrud Stephen F. Price Todd D. Ringler Gregory J. Streletz Adrian K. Turner Luke P. Van Roekel Milena Veneziani Jonathan D. Wolfe Phillip J. Wolfram Jonathan L. Woodring |
author_facet | Mark R. Petersen Xylar S. Asay‐Davis Anne S. Berres Qingshan Chen Nils Feige Matthew J. Hoffman Douglas W. Jacobsen Philip W. Jones Mathew E. Maltrud Stephen F. Price Todd D. Ringler Gregory J. Streletz Adrian K. Turner Luke P. Van Roekel Milena Veneziani Jonathan D. Wolfe Phillip J. Wolfram Jonathan L. Woodring |
author_sort | Mark R. Petersen |
collection | DOAJ |
description | Abstract The Energy Exascale Earth System Model (E3SM) is a new coupled Earth system model sponsored by the U.S Department of Energy. Here we present E3SM global simulations using active ocean and sea ice that are driven by the Coordinated Ocean‐ice Reference Experiments II (CORE‐II) interannual atmospheric forcing data set. The E3SM ocean and sea ice components are MPAS‐Ocean and MPAS‐Seaice, which use the Model for Prediction Across Scales (MPAS) framework and run on unstructured horizontal meshes. For this study, grid cells vary from 30 to 60 km for the low‐resolution mesh and 6 to 18 km at high resolution. The vertical grid is a structured z‐star coordinate and uses 60 and 80 layers for low and high resolution, respectively. The lower‐resolution simulation was run for five CORE cycles (310 years) with little drift in sea surface temperature (SST) or heat content. The meridional heat transport (MHT) is within observational range, while the meridional overturning circulation at 26.5°N is low compared to observations. The largest temperature biases occur in the Labrador Sea and western boundary currents (WBCs), and the mixed layer is deeper than observations at northern high latitudes in the winter months. In the Antarctic, maximum mixed layer depths (MLD) compare well with observations, but the spatial MLD pattern is shifted relative to observations. Sea ice extent, volume, and concentration agree well with observations. At high resolution, the sea surface height compares well with satellite observations in mean and variability. |
first_indexed | 2024-12-21T11:40:10Z |
format | Article |
id | doaj.art-7151736de2cc41eca353f23630c7d76e |
institution | Directory Open Access Journal |
issn | 1942-2466 |
language | English |
last_indexed | 2024-12-21T11:40:10Z |
publishDate | 2019-05-01 |
publisher | American Geophysical Union (AGU) |
record_format | Article |
series | Journal of Advances in Modeling Earth Systems |
spelling | doaj.art-7151736de2cc41eca353f23630c7d76e2022-12-21T19:05:19ZengAmerican Geophysical Union (AGU)Journal of Advances in Modeling Earth Systems1942-24662019-05-011151438145810.1029/2018MS001373An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE‐II ForcingMark R. Petersen0Xylar S. Asay‐Davis1Anne S. Berres2Qingshan Chen3Nils Feige4Matthew J. Hoffman5Douglas W. Jacobsen6Philip W. Jones7Mathew E. Maltrud8Stephen F. Price9Todd D. Ringler10Gregory J. Streletz11Adrian K. Turner12Luke P. Van Roekel13Milena Veneziani14Jonathan D. Wolfe15Phillip J. Wolfram16Jonathan L. Woodring17Computational Physics and Methods (CCS‐2) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAApplied Computer Science (CCS‐7) Los Alamos National Laboratory Los Alamos NM USASchool of Mathematical and Statistical Sciences Clemson University Clemson SC USAApplied Computer Science (CCS‐7) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAApplied Computer Science (CCS‐7) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAFluid Dynamics and Solid Mechanics (T‐3) Los Alamos National Laboratory Los Alamos NM USAApplied Computer Science (CCS‐7) Los Alamos National Laboratory Los Alamos NM USAAbstract The Energy Exascale Earth System Model (E3SM) is a new coupled Earth system model sponsored by the U.S Department of Energy. Here we present E3SM global simulations using active ocean and sea ice that are driven by the Coordinated Ocean‐ice Reference Experiments II (CORE‐II) interannual atmospheric forcing data set. The E3SM ocean and sea ice components are MPAS‐Ocean and MPAS‐Seaice, which use the Model for Prediction Across Scales (MPAS) framework and run on unstructured horizontal meshes. For this study, grid cells vary from 30 to 60 km for the low‐resolution mesh and 6 to 18 km at high resolution. The vertical grid is a structured z‐star coordinate and uses 60 and 80 layers for low and high resolution, respectively. The lower‐resolution simulation was run for five CORE cycles (310 years) with little drift in sea surface temperature (SST) or heat content. The meridional heat transport (MHT) is within observational range, while the meridional overturning circulation at 26.5°N is low compared to observations. The largest temperature biases occur in the Labrador Sea and western boundary currents (WBCs), and the mixed layer is deeper than observations at northern high latitudes in the winter months. In the Antarctic, maximum mixed layer depths (MLD) compare well with observations, but the spatial MLD pattern is shifted relative to observations. Sea ice extent, volume, and concentration agree well with observations. At high resolution, the sea surface height compares well with satellite observations in mean and variability.https://doi.org/10.1029/2018MS001373oceansea iceclimatemodeling |
spellingShingle | Mark R. Petersen Xylar S. Asay‐Davis Anne S. Berres Qingshan Chen Nils Feige Matthew J. Hoffman Douglas W. Jacobsen Philip W. Jones Mathew E. Maltrud Stephen F. Price Todd D. Ringler Gregory J. Streletz Adrian K. Turner Luke P. Van Roekel Milena Veneziani Jonathan D. Wolfe Phillip J. Wolfram Jonathan L. Woodring An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE‐II Forcing Journal of Advances in Modeling Earth Systems ocean sea ice climate modeling |
title | An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE‐II Forcing |
title_full | An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE‐II Forcing |
title_fullStr | An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE‐II Forcing |
title_full_unstemmed | An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE‐II Forcing |
title_short | An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE‐II Forcing |
title_sort | evaluation of the ocean and sea ice climate of e3sm using mpas and interannual core ii forcing |
topic | ocean sea ice climate modeling |
url | https://doi.org/10.1029/2018MS001373 |
work_keys_str_mv | AT markrpetersen anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT xylarsasaydavis anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT annesberres anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT qingshanchen anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT nilsfeige anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT matthewjhoffman anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT douglaswjacobsen anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT philipwjones anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT mathewemaltrud anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT stephenfprice anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT todddringler anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT gregoryjstreletz anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT adriankturner anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT lukepvanroekel anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT milenaveneziani anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT jonathandwolfe anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT phillipjwolfram anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT jonathanlwoodring anevaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT markrpetersen evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT xylarsasaydavis evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT annesberres evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT qingshanchen evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT nilsfeige evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT matthewjhoffman evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT douglaswjacobsen evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT philipwjones evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT mathewemaltrud evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT stephenfprice evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT todddringler evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT gregoryjstreletz evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT adriankturner evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT lukepvanroekel evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT milenaveneziani evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT jonathandwolfe evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT phillipjwolfram evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing AT jonathanlwoodring evaluationoftheoceanandseaiceclimateofe3smusingmpasandinterannualcoreiiforcing |