Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells.

Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms u...

Full description

Bibliographic Details
Main Authors: Anton K Raap, Roshan S Jahangir Tafrechi, Frans M van de Rijke, Angela Pyle, Carolina Wählby, Karoly Szuhai, Raimond B G Ravelli, René F M de Coo, Harsha K Rajasimha, Mats Nilsson, Patrick F Chinnery, David C Samuels, George M C Janssen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3525564?pdf=render
_version_ 1811259300317757440
author Anton K Raap
Roshan S Jahangir Tafrechi
Frans M van de Rijke
Angela Pyle
Carolina Wählby
Karoly Szuhai
Raimond B G Ravelli
René F M de Coo
Harsha K Rajasimha
Mats Nilsson
Patrick F Chinnery
David C Samuels
George M C Janssen
author_facet Anton K Raap
Roshan S Jahangir Tafrechi
Frans M van de Rijke
Angela Pyle
Carolina Wählby
Karoly Szuhai
Raimond B G Ravelli
René F M de Coo
Harsha K Rajasimha
Mats Nilsson
Patrick F Chinnery
David C Samuels
George M C Janssen
author_sort Anton K Raap
collection DOAJ
description Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases.
first_indexed 2024-04-12T18:28:11Z
format Article
id doaj.art-7159e41e8e794a30ab231bb6bbd37c83
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-04-12T18:28:11Z
publishDate 2012-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-7159e41e8e794a30ab231bb6bbd37c832022-12-22T03:21:09ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-01712e5208010.1371/journal.pone.0052080Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells.Anton K RaapRoshan S Jahangir TafrechiFrans M van de RijkeAngela PyleCarolina WählbyKaroly SzuhaiRaimond B G RavelliRené F M de CooHarsha K RajasimhaMats NilssonPatrick F ChinneryDavid C SamuelsGeorge M C JanssenMany pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases.http://europepmc.org/articles/PMC3525564?pdf=render
spellingShingle Anton K Raap
Roshan S Jahangir Tafrechi
Frans M van de Rijke
Angela Pyle
Carolina Wählby
Karoly Szuhai
Raimond B G Ravelli
René F M de Coo
Harsha K Rajasimha
Mats Nilsson
Patrick F Chinnery
David C Samuels
George M C Janssen
Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells.
PLoS ONE
title Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells.
title_full Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells.
title_fullStr Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells.
title_full_unstemmed Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells.
title_short Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells.
title_sort non random mtdna segregation patterns indicate a metastable heteroplasmic segregation unit in m 3243a g cybrid cells
url http://europepmc.org/articles/PMC3525564?pdf=render
work_keys_str_mv AT antonkraap nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT roshansjahangirtafrechi nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT fransmvanderijke nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT angelapyle nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT carolinawahlby nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT karolyszuhai nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT raimondbgravelli nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT renefmdecoo nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT harshakrajasimha nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT matsnilsson nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT patrickfchinnery nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT davidcsamuels nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells
AT georgemcjanssen nonrandommtdnasegregationpatternsindicateametastableheteroplasmicsegregationunitinm3243agcybridcells