Summary: | Abstract Due to the complexity of industrial control systems and the diversity of protocols in networks, it is difficult to build intrusion detection models based on network characteristics and physical modeling. In order to build a better flow model without additional knowledge, we propose an intrusion detection method based on the content of network packets. The construction of the model is based on the idea of ZOE method. The similarity between flows is calculated through the sequential coverage algorithm, the normal flow model is established by multi-layered clustering algorithm, and the Count-Mean-Min Sketch is used to store and count the flow model. By comparing the unknown flow with the constructed normal flow model, we achieve the intrusion detection of industrial control system (ICS). The overall experimental results on 4 ICS datasets show that the improved method can effectively improve the detection rate and reduce the false-positive rate. The detection rate reached 96.7% on average, and the false-positive rate reached 0.7% on average.
|