Nano-particle Characteristic Emitted from Gasoline Direct Injection Engine Equipped with Non-Thermal Plasma Device

The impact of non-thermal plasma (NTP) on particulate matter (PM) removal, nitrogen oxide (NOx) reduction, and hydrocarbon species in exhaust gases from gasoline direct injection (GDI) engines using gasoline E20 fuel and a mean effective pressure (IMEP) of 6 bar. The experiments were conducted with...

Full description

Bibliographic Details
Main Authors: Neamyou Pichitpon, Theinnoi Kampanart, Sawatmongkhon Boonlue, Sittichompoo Sak
Format: Article
Language:English
Published: EDP Sciences 2023-01-01
Series:E3S Web of Conferences
Subjects:
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2023/65/e3sconf_ri2c2023_01003.pdf
Description
Summary:The impact of non-thermal plasma (NTP) on particulate matter (PM) removal, nitrogen oxide (NOx) reduction, and hydrocarbon species in exhaust gases from gasoline direct injection (GDI) engines using gasoline E20 fuel and a mean effective pressure (IMEP) of 6 bar. The experiments were conducted with an exhaust gas flow rate of 20 L/min, applying high voltage in the range of 0 to 10 kV (2 kV per step) at a frequency of 500 Hz. The results show that NTP reduces PM concentrations, particularly in the nucleation mode (10 nm particles). Maximum PM removal of approximately 83% However, with experimental results, compared to 0 kV, the production of particulate matter Aitken mode increased up to 19 times for a voltage increase of 10 kV, and NOx removal has been at a maximum of about 9.5%, with an energy density of 5 J/L at 10 kV. The effects of NTP on hydrocarbon species such as ethylene, propylene, acetylene, 1.3 butadiene, methane, and ethane have been slightly affected by increased high voltages.
ISSN:2267-1242