Accounting for Resilience in the Selection of R Factors for a RC Unsymmetrical Building

Several design codes consider the non-linear response of a building by using one of the most important seismic parameters, called the response reduction factor (R). The lack of a detailed description of the R factor selection creates the need for a deeper study. This paper emphasises a methodology f...

Full description

Bibliographic Details
Main Authors: S. Prasanth, Goutam Ghosh, Praveen Kumar Gupta, Claudia Casapulla, Linda Giresini
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/3/1316
Description
Summary:Several design codes consider the non-linear response of a building by using one of the most important seismic parameters, called the response reduction factor (R). The lack of a detailed description of the R factor selection creates the need for a deeper study. This paper emphasises a methodology for the selection of a proper R factor based on resilience aspects. Unsymmetrical/irregular buildings have become the most common in recent times due to aesthetic purposes. However, because of the complexity due to the torsional effect, the selection of the R factor is even more difficult for this type of building. Therefore, a high-rise G+10-storey L-shaped building is herein considered. The building has re-entrant corners based on the structural/plan arrangement. Different R factors were used in the building design, considering buildings subjected to both unidirectional and bidirectional seismic loading scenarios. The building response with respect to various R factors (R equal to 3, 4, 5 and 6) in terms of its performance level, functionality, damage ratio and resilience was assessed at two design levels, i.e., design basic earthquake (DBE) and maximum considered earthquake (MCE). The study concludes that, considering the above criteria along with the resilience aspect, a maximum R factor up to 4 can be recommended for unidirectional loading, whereas for bidirectional loading, the maximum recommended R factor is 3.
ISSN:2076-3417