New Poisson inequality for the Radon transform of infinitely differentiable functions
Abstract Poisson inequality for the Radon transform is a key tool in signal analysis and processing. An analogue of the Hardy–Littlewood–Poisson inequality for the Radon transform of infinitely differentiable functions is proved. The result is related to a paper of Luan and Vieira (J. Inequal. Appl....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-08-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-018-1805-9 |
Summary: | Abstract Poisson inequality for the Radon transform is a key tool in signal analysis and processing. An analogue of the Hardy–Littlewood–Poisson inequality for the Radon transform of infinitely differentiable functions is proved. The result is related to a paper of Luan and Vieira (J. Inequal. Appl. 2017:12, 2017) and to a previous paper by Yang and Ren (Proc. Indian Acad. Sci. Math. Sci. 124(2):175-178, 2014). |
---|---|
ISSN: | 1029-242X |