Analysis of crucial molecules involved in herniated discs and degenerative disc disease

OBJECTIVES: Herniated discs and degenerative disc disease are major health problems worldwide. However, their pathogenesis remains obscure. This study aimed to explore the molecular mechanisms of these ailments and to identify underlying therapeutic targets. MATERIAL AND METHODS: Using the GSE23130...

Full description

Bibliographic Details
Main Authors: Zhigang Qu, Weiwei Miao, Qi Zhang, Zhenyu Wang, Changfeng Fu, Jinhua Han, Yi Liu
Format: Article
Language:English
Published: Elsevier España 2013-01-01
Series:Clinics
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-59322013000200017
Description
Summary:OBJECTIVES: Herniated discs and degenerative disc disease are major health problems worldwide. However, their pathogenesis remains obscure. This study aimed to explore the molecular mechanisms of these ailments and to identify underlying therapeutic targets. MATERIAL AND METHODS: Using the GSE23130 microarray datasets downloaded from the Gene Expression Omnibus database, differentially co-expressed genes and links were identified using the differentially co-expressed gene and link method with a false discovery rate ,0.25 as a significant threshold. Subsequently, the underlying molecular mechanisms of the differential co-expression of these genes were investigated using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. In addition, the transcriptional regulatory relationship was also investigated. RESULTS: Through the analysis of the gene expression profiles of different specimens from patients with these diseases, 539 differentially co-expressed genes were identified for these ailments. The ten most significant signaling pathways involving the differentially co-expressed genes were identified by enrichment analysis. Among these pathways, apoptosis and extracellular matrix-receptor interaction pathways have been reported to be related to these diseases. A total of 62 pairs of regulatory relationships between transcription factors and their target genes were identified as critical for the pathogenesis of these diseases. CONCLUSION: The results of our study will help to identify the mechanisms responsible for herniated discs and degenerative disc disease and provides a theoretical basis for further therapeutic study.
ISSN:1807-5932
1980-5322