Comparison of the Sub-Tour Elimination Methods for the Asymmetric Traveling Salesman Problem Applying the SECA Method

There are many sub-tour elimination constraint (SEC) formulations for the traveling salesman problem (TSP). Among the different methods found in articles, usually three apply more than others. This study examines the Danzig–Fulkerson–Johnson (DFJ), Miller–Tucker–Zemlin (MTZ), and Gavish–Graves (GG)...

Full description

Bibliographic Details
Main Authors: Ramin Bazrafshan, Sarfaraz Hashemkhani Zolfani, S. Mohammad J. Mirzapour Al-e-hashem
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/10/1/19
Description
Summary:There are many sub-tour elimination constraint (SEC) formulations for the traveling salesman problem (TSP). Among the different methods found in articles, usually three apply more than others. This study examines the Danzig–Fulkerson–Johnson (DFJ), Miller–Tucker–Zemlin (MTZ), and Gavish–Graves (GG) formulations to select the best asymmetric traveling salesman problem (ATSP) formulation. The study introduces five criteria as the number of constraints, number of variables, type of variables, time of solving, and differences between the optimum and the relaxed value for comparing these constraints. The reason for selecting these criteria is that they have the most significant impact on the mathematical problem-solving complexity. A new and well-known multiple-criteria decision making (MCDM) method, the simultaneous evaluation of the criteria and alternatives (SECA) method was applied to analyze these criteria. To use the SECA method for ranking the alternatives and extracting information about the criteria from constraints needs computational computing. In this research, we use CPLEX 12.8 software to compute the criteria value and LINGO 11 software to solve the SECA method. Finally, we conclude that the Gavish–Graves (GG) formulation is the best. The new web-based software was used for testing the results.
ISSN:2075-1680