Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks

Abstract Safety-critical sensory applications, like medical diagnosis, demand accurate decisions from limited, noisy data. Bayesian neural networks excel at such tasks, offering predictive uncertainty assessment. However, because of their probabilistic nature, they are computationally intensive. An...

Full description

Bibliographic Details
Main Authors: Djohan Bonnet, Tifenn Hirtzlin, Atreya Majumdar, Thomas Dalgaty, Eduardo Esmanhotto, Valentina Meli, Niccolo Castellani, Simon Martin, Jean-François Nodin, Guillaume Bourgeois, Jean-Michel Portal, Damien Querlioz, Elisa Vianello
Format: Article
Language:English
Published: Nature Portfolio 2023-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-43317-9
_version_ 1797452107359453184
author Djohan Bonnet
Tifenn Hirtzlin
Atreya Majumdar
Thomas Dalgaty
Eduardo Esmanhotto
Valentina Meli
Niccolo Castellani
Simon Martin
Jean-François Nodin
Guillaume Bourgeois
Jean-Michel Portal
Damien Querlioz
Elisa Vianello
author_facet Djohan Bonnet
Tifenn Hirtzlin
Atreya Majumdar
Thomas Dalgaty
Eduardo Esmanhotto
Valentina Meli
Niccolo Castellani
Simon Martin
Jean-François Nodin
Guillaume Bourgeois
Jean-Michel Portal
Damien Querlioz
Elisa Vianello
author_sort Djohan Bonnet
collection DOAJ
description Abstract Safety-critical sensory applications, like medical diagnosis, demand accurate decisions from limited, noisy data. Bayesian neural networks excel at such tasks, offering predictive uncertainty assessment. However, because of their probabilistic nature, they are computationally intensive. An innovative solution utilizes memristors’ inherent probabilistic nature to implement Bayesian neural networks. However, when using memristors, statistical effects follow the laws of device physics, whereas in Bayesian neural networks, those effects can take arbitrary shapes. This work overcome this difficulty by adopting a variational inference training augmented by a “technological loss”, incorporating memristor physics. This technique enabled programming a Bayesian neural network on 75 crossbar arrays of 1,024 memristors, incorporating CMOS periphery for in-memory computing. The experimental neural network classified heartbeats with high accuracy, and estimated the certainty of its predictions. The results reveal orders-of-magnitude improvement in inference energy efficiency compared to a microcontroller or an embedded graphics processing unit performing the same task.
first_indexed 2024-03-09T15:04:00Z
format Article
id doaj.art-71a0f04b513342a69e2eef0f95dfe8f1
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-09T15:04:00Z
publishDate 2023-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-71a0f04b513342a69e2eef0f95dfe8f12023-11-26T13:45:23ZengNature PortfolioNature Communications2041-17232023-11-0114111310.1038/s41467-023-43317-9Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networksDjohan Bonnet0Tifenn Hirtzlin1Atreya Majumdar2Thomas Dalgaty3Eduardo Esmanhotto4Valentina Meli5Niccolo Castellani6Simon Martin7Jean-François Nodin8Guillaume Bourgeois9Jean-Michel Portal10Damien Querlioz11Elisa Vianello12Université Grenoble Alpes, CEA, LETIUniversité Grenoble Alpes, CEA, LETIUniversité Paris-Saclay, CNRS, Centre de Nanosciences et de NanotechnologiesUniversité Grenoble Alpes, CEA, LISTUniversité Grenoble Alpes, CEA, LETIUniversité Grenoble Alpes, CEA, LETIUniversité Grenoble Alpes, CEA, LETIUniversité Grenoble Alpes, CEA, LETIUniversité Grenoble Alpes, CEA, LETIUniversité Grenoble Alpes, CEA, LETIAix-Marseille Université, CNRS, Institut Matériaux Microélectronique Nanosciences de ProvenceUniversité Paris-Saclay, CNRS, Centre de Nanosciences et de NanotechnologiesUniversité Grenoble Alpes, CEA, LETIAbstract Safety-critical sensory applications, like medical diagnosis, demand accurate decisions from limited, noisy data. Bayesian neural networks excel at such tasks, offering predictive uncertainty assessment. However, because of their probabilistic nature, they are computationally intensive. An innovative solution utilizes memristors’ inherent probabilistic nature to implement Bayesian neural networks. However, when using memristors, statistical effects follow the laws of device physics, whereas in Bayesian neural networks, those effects can take arbitrary shapes. This work overcome this difficulty by adopting a variational inference training augmented by a “technological loss”, incorporating memristor physics. This technique enabled programming a Bayesian neural network on 75 crossbar arrays of 1,024 memristors, incorporating CMOS periphery for in-memory computing. The experimental neural network classified heartbeats with high accuracy, and estimated the certainty of its predictions. The results reveal orders-of-magnitude improvement in inference energy efficiency compared to a microcontroller or an embedded graphics processing unit performing the same task.https://doi.org/10.1038/s41467-023-43317-9
spellingShingle Djohan Bonnet
Tifenn Hirtzlin
Atreya Majumdar
Thomas Dalgaty
Eduardo Esmanhotto
Valentina Meli
Niccolo Castellani
Simon Martin
Jean-François Nodin
Guillaume Bourgeois
Jean-Michel Portal
Damien Querlioz
Elisa Vianello
Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
Nature Communications
title Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
title_full Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
title_fullStr Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
title_full_unstemmed Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
title_short Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
title_sort bringing uncertainty quantification to the extreme edge with memristor based bayesian neural networks
url https://doi.org/10.1038/s41467-023-43317-9
work_keys_str_mv AT djohanbonnet bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT tifennhirtzlin bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT atreyamajumdar bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT thomasdalgaty bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT eduardoesmanhotto bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT valentinameli bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT niccolocastellani bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT simonmartin bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT jeanfrancoisnodin bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT guillaumebourgeois bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT jeanmichelportal bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT damienquerlioz bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks
AT elisavianello bringinguncertaintyquantificationtotheextremeedgewithmemristorbasedbayesianneuralnetworks